When studying the perfect transfer of a quantum state from one site to another, it is typically assumed that one can receive the arriving state at a specific instant in time, with perfect accuracy. Here, we study how sensitive perfect state transfer is to that timing. We design engineered spin chains which reduce their sensitivity, proving that this construction is asymptotically optimal. The same construction is applied to the task of creating superpositions, also known as fractional revival.
more »
« less
This content will become publicly available on February 1, 2026
Hamiltonians that realize perfect quantum state transfer and early state exclusion
In this paper, we show how to construct XX Hamiltonians that realize perfect quantum state transfer and also have the property that the overlap of the time evolved state with the initial state is zero for some time before the transfer time. If the latter takes place, we call it an early exclusion state.We also show that in some cases, early state exclusion is impossible. The proofs rely on properties of Krawtchouk and Chebyshev polynomials.
more »
« less
- Award ID(s):
- 2349433
- PAR ID:
- 10580023
- Publisher / Repository:
- Springer
- Date Published:
- Journal Name:
- Quantum Information Processing
- Volume:
- 24
- Issue:
- 2
- ISSN:
- 1573-1332
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We design a quantum algorithm for ground state preparation in the early fault tolerant regime. As a Monte Carlo style quantum algorithm, our method features a Lindbladian where the target state is stationary. The construction of this Lindbladian is algorithmic and should not be seen as a specific approximation to some weakly coupled system-bath dynamics in nature. Our algorithm can be implemented using just one ancilla qubit and efficiently simulated on a quantum computer. It can prepare the ground state even when the initial state has zero overlap with the ground state, bypassing the most significant limitation of methods like quantum phase estimation. As a variant, we also propose a discrete-time algorithm, demonstrating even better efficiency and providing a near-optimal simulation cost depending on the desired evolution time and precision. Numerical simulations using Ising and Hubbard models demonstrate the efficacy and applicability of our method. Published by the American Physical Society2024more » « less
-
null (Ed.)Abstract Semiconductor quantum-dot spin qubits are a promising platform for quantum computation, because they are scalable and possess long coherence times. In order to realize this full potential, however, high-fidelity information transfer mechanisms are required for quantum error correction and efficient algorithms. Here, we present evidence of adiabatic quantum-state transfer in a chain of semiconductor quantum-dot electron spins. By adiabatically modifying exchange couplings, we transfer single- and two-spin states between distant electrons in less than 127 ns. We also show that this method can be cascaded for spin-state transfer in long spin chains. Based on simulations, we estimate that the probability to correctly transfer single-spin eigenstates and two-spin singlet states can exceed 0.95 for the experimental parameters studied here. In the future, state and process tomography will be required to verify the transfer of arbitrary single qubit states with a fidelity exceeding the classical bound. Adiabatic quantum-state transfer is robust to noise and pulse-timing errors. This method will be useful for initialization, state distribution, and readout in large spin-qubit arrays for gate-based quantum computing. It also opens up the possibility of universal adiabatic quantum computing in semiconductor quantum-dot spin qubits.more » « less
-
Tracking vibrational motions during a photochemical or photophysical process has gained momentum, due to its sensitivity to the progression of reaction and change of environment. In this work, we implemented an advanced ultrafast vibrational technique, femtosecond-stimulated Raman spectroscopy (FSRS), to monitor the excited state structural evolution of an engineered green fluorescent protein (GFP) single-site mutant S205V. This mutation alters the original excited state proton transfer (ESPT) chain. By strategically tuning the Raman pump to different wavelengths (i.e., 801, 539, and 504 nm) to achieve pre-resonance with transient excited state electronic bands, the characteristic Raman modes of the excited protonated (A*) chromophore species and intermediate deprotonated (I*) species can be selectively monitored. The inhomogeneous distribution/population of A* species go through ESPT with a similar ~300 ps time constant, confirming that bridging a water molecule to protein residue T203 in the ESPT chain is the rate-limiting step. Some A* species undergo vibrational cooling through high-frequency motions on the ~190 ps time scale. At early times, a portion of the largely protonated A* species could also undergo vibrational cooling or return to the ground state with a ~80 ps time constant. On the photoproduct side, a ~1330 cm−1 delocalized motion is observed, with dispersive line shapes in both the Stokes and anti-Stokes FSRS with a pre-resonance Raman pump, which indicates strong vibronic coupling, as the mode could facilitate the I* species to reach a relatively stable state (e.g., the main fluorescent state) after conversion from A*. Our findings disentangle the contributions of various vibrational motions active during the ESPT reaction, and offer new structural dynamics insights into the fluorescence mechanisms of engineered GFPs and other analogous autofluorescent proteins.more » « less
-
Spatial skills in early childhood are key predictors of mathematical achievement. Previous studies have found that training mental rotation can transfer to arithmetic skills; however, some studies have failed to replicate this transfer effect, or observed transfer effects only in certain types of arithmetic problems. Even in studies where transfer effects were observed, the underlying mechanisms of this transfer have not been explored. This study focused on the effect of short-duration (i.e., single-session) spatial training on arithmetic skills, and tested two underlying mechanisms. First, based on the spatial modeling account, short-duration spatial training may prime spatial processing, leading to a reduction in the use of counting strategies and an increase in spatially-related strategies following spatial training. Second, from a social-psychological account, short-duration spatial training may reduce children’s state anxiety, thus allowing them more cognitive resources in spatial and arithmetic tasks. We tested these mechanisms among 80 U.S. second- and third-graders using a pretest-intervention-posttest design, with 40 children in the spatial training group and 40 in an active control group. Short-duration spatial training improved children’s overall arithmetic performance; this effect did not differ by problem type (conventional, missing-term, or two-step problems). Spatial training also reduced children’s use of counting strategies. However, we did not find a significant increase in spatially-related strategies, nor did we observe a significant reduction in state anxiety. This study makes an important contribution to understanding the mechanisms underlying the transfer effects of short-duration spatial training on arithmetic skills, providing partial support for the spatial modeling account.more » « less
An official website of the United States government
