skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: HF Radar Observations and Modeling of the Impact of the 8 April 2024 Total Solar Eclipse on the Ionosphere‐Thermosphere System
Abstract The path of totality of the 8 April 2024 solar eclipse traversed the fields‐of‐view of four US SuperDARN radars. This rare scenario provided an excellent opportunity to monitor the large‐scale ionospheric response to the eclipse. In this study, we present observations made by the Blackstone (BKS) SuperDARN radar and a Digisonde during the eclipse. Two striking effects were observed by the BKS radar: (a) the Doppler velocities associated with ground scatter coalesced into a pattern clearly organized by the line of totality, with a reversal in sign across this line, and, (b) a delay of 45 min between time of maximum obscuration and maximum effect on the skip distance. The skip distance estimated using a SAMI3 simulation of the eclipse did not however capture the asymmetric time‐delay. These observations suggest that the neutral atmosphere plays an important role in controlling ionospheric plasma dynamics, which were missing in SAMI3 simulations.  more » « less
Award ID(s):
1934973 1935110
PAR ID:
10580027
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
51
Issue:
24
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract An annular solar eclipse was visible on 14 October 2023 from 15:00–21:00 UT as its path traveled across North, Central, and South America. In this letter, we present the first multi‐frequency Super Dual Auroral Radar Network (SuperDARN) observations of the bottomside ionospheric response to a solar eclipse using a novel experimental mode designed for the October 2023 annular eclipse. We compare our results from the mid‐latitude Christmas Valley East radar with measurements of the vertical electron density profile from the nearby Boulder Digisonde, finding the changes in 1‐ and 2‐hop ground scatter skip distance are well correlated with the ‐layer density response, which lags the peak obscuration by 30 min. Changes in the line‐of‐sight Doppler shifts are better aligned with the time derivative of eclipse obscuration. 
    more » « less
  2. Abstract This paper conducts a multi‐instrument and data assimilation analysis of the three‐dimensional ionospheric electron density responses to the total solar eclipse on 08 April 2024. The altitude‐resolved electron density variations over the continental US and adjacent regions are analyzed using the Millstone Hill incoherent scatter radar data, ionosonde observations, Swarm in situ measurements, and a novel TEC‐based ionospheric data assimilation system (TIDAS) with SAMI3 model as the background. The principal findings are summarized as follows: (a) The ionospheric hmF2 exhibited a slight enhancement in the initial phase of the eclipse, followed by a distinct reduction of 20–30 km in the recovery phase of the eclipse. The hmF2 in the umbra region showed a post‐eclipse fluctuation, characterized by wavelike perturbations of 10–25 km in magnitude and a period of 30 min. (b) There was a substantial reduction in ionospheric electron density of 20%–50% during the eclipse, with the maximum depletion observed in the F‐region around 200–250 km. The ionospheric electron density variation exhibited a significant altitude‐dependent feature, wherein the response time gradually delayed with increasing altitude. (c) The bottomside ionospheric electron density displayed an immediate reduction after local eclipse began, reaching maximum depletion 5–10 min after the maximum obscuration. In contrast, the topside ionospheric electron density showed a significantly delayed response, with maximum depletion occurring 1–2.5 hr after the peak obscuration. 
    more » « less
  3. Abstract The ground‐based, high‐frequency radars of the Super Dual Auroral Radar Network (SuperDARN) observe backscatter from ionospheric field‐aligned plasma irregularities and features on the Earth's surface out to ranges of several thousand kilometers via over‐the‐horizon propagation of transmitted radio waves. Interferometric techniques can be applied to the received signals at the primary and secondary antenna arrays to measure the vertical angle of arrival, or elevation angle, for more accurate geolocation of SuperDARN observations. However, the calibration of SuperDARN interferometer measurements remains challenging for several reasons, including a 2πphase ambiguity when solving for the time delay correction factor needed to account for differences in the electrical path lengths between signals received at the two antenna arrays. We present a new technique using multi‐frequency ionospheric and ground backscatter observations for the calibration of SuperDARN interferometer data, and demonstrate its application to both historical and recent data. 
    more » « less
  4. It has been proposed [ChimonasH1970], that a total solar eclipse should generate internal Gravity Waves (GWs) that manifest as Traveling Ionospheric Disturbances (TIDs) at ionospheric heights. Zhang et al. [2017] recently reported observations of electron density perturbations trailing the region of maximum obscuration, claiming the results as the first unambiguous evidences for eclipse induced bow waves. We present evidence showing extensive TID activity on two consecutive days, the day of the eclipse and the day before. A particularly intense TID concentric wave field emerged from the background ionosphere five hours before the arrival of the totality, and persisted there throughout the eclipse. The apparent center was located over Iowa/South Dakota region, 300-500 km north from the eclipse path. We examine concurrent observations of tropospheric and ionospheric weather, and find a great spatiotemporal correlation. TID wave parameters do agree with previous observations and models of thunderstorm generated GWs/TIDs, conversely the wave parameters are an order of magnitude off from modeling results for eclipse generated GWs/TIDs. 
    more » « less
  5. Abstract How do the atmosphere and airborne insects respond to the abrupt cessation and restoration of sunlight during a total eclipse? The Flexible Array of Radars and Mesonets (FARM), including three mobile Doppler on Wheels (DOW) radars, mobile mesonets, Pod weather stations, and an upper-air sounding system, was deployed as an unprecedentedly dense observing network in the path of totality of the 21 August 2017 eclipse that spanned the United States from its Pacific to Atlantic coasts. This was the first targeted dual-polarization radar, multiple-Doppler, and micronet study of the impacts of totality on meteorology and insect behavior. The study area was chosen to be completely sunny, nearly devoid of trees, with homogeneous, nonforested land use, and very flat. This resulted in as near an ideal observational environment as realistically attainable to observe the effects of a total solar eclipse absent the confounding effects of variable cloud shading, terrain, and land use. Rapid and substantial changes in the boundary layer and propagation of a prominent radar fine line associated with a posttotality wind shift mechanism different than previously hypothesized were observed. Profound and rapid changes in airborne insect behavior were documented, including descent and then reascent during the minutes immediately surrounding totality, with implications related to solar-related insect navigational mechanisms and behavior. 
    more » « less