skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Adversarial Machine Learning Attacks in Internet of Things Systems
Researchers are looking into solutions to support the enormous demand for wireless communication, which has been exponentially increasing along with the growth of technology. The sixth generation (6G) Network emerged as the leading solution for satisfying the requirements placed on the telecommunications system. 6G technology mainly depends on various machine learning and artificial intelligence techniques. The performance of these machine learning algorithms is high. Still, their security has been neglected for some reason, which leaves the door open to various vulnerabilities that attackers can exploit to compromise systems. Therefore, it is essential to evaluate the security of machine learning algorithms to prevent them from being spoofed by malicious hackers. Prior research has shown that the decision tree is one of the most popular algorithms used by 80% of researchers for classification problems. In this work, we collect the dataset from a laboratory testbed of over 100 Internet of things (IoT) devices. The devices include smart cameras, smart light bulbs, Alexa, and others. We evaluate classifiers using the original dataset during the experiment and record a 98% accuracy. We then use the label-flipping attack approach to poison our dataset and record the output. As a result, flipping 10%, 20%, 30%, 40%, and 50% of the poison data generated accuracies of 86%, 74%, 64%, 54%, and 50%, respectively.  more » « less
Award ID(s):
2042700
PAR ID:
10580322
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
IEEE
Date Published:
ISBN:
978-1-6654-7729-1
Page Range / eLocation ID:
1 to 7
Format(s):
Medium: X
Location:
DC, USA
Sponsoring Org:
National Science Foundation
More Like this
  1. Researchers are looking into solutions to support the enormous demand for wireless communication, which has been exponentially increasing along with the growth of technology. The sixth generation (6G) Network emerged as the leading solution for satisfying the requirements placed on the telecommunications system. 6G technology mainly depends on various machine learning and artificial intelligence techniques. The performance of these machine learning algorithms is high. Still, their security has been neglected for some reason, which leaves the door open to various vulnerabilities that attackers can exploit to compromise systems. Therefore, it is essential to evaluate the security of machine learning algorithms to prevent them from being spoofed by malicious hackers. Prior research has shown that the decision tree is one of the most popular algorithms used by 80% of researchers for classification problems. In this work, we collect the dataset from a laboratory testbed of over 100 Internet of things (IoT) devices. The devices include smart cameras, smart light bulbs, Alexa, and others. We evaluate classifiers using the original dataset during the experiment and record a 98% accuracy. We then use the label-flipping attack approach to poison our dataset and record the output. As a result, flipping 10%, 20%, 30%, 40%, and 50% of the poison data generated accuracies of 86%, 74%, 64%, 54%, and 50%, respectively. 
    more » « less
  2. The increasing adoption of smart home devices has raised significant concerns regarding privacy, security, and vulnerability to cyber threats. This study addresses these challenges by presenting a federated learning framework enhanced with blockchain technology to detect intrusions in smart home environments. The proposed approach combines knowledge distillation and transfer learning to support heterogeneous IoT devices with varying computational capacities, ensuring efficient local training without compromising privacy. Blockchain technology is integrated to provide decentralized, tamper-resistant access control through Role-Based Access Control (RBAC), allowing only authenticated devices to participate in the federated learning process. This combination ensures data confidentiality, system integrity, and trust among devices. This framework’s performance was evaluated using the N-BaIoT dataset, showcasing its ability to detect anomalies caused by botnets such as Mirai and BASHLITE across diverse IoT devices. Results demonstrate significant improvements in intrusion detection accuracy, particularly for resource-constrained devices, while maintaining privacy and adaptability in dynamic smart home environments. These findings highlight the potential of this blockchain-enhanced federated learning system to offer a scalable, robust, and privacy-preserving solution for securing smart homes against evolving threats. 
    more » « less
  3. Smart grid has evolved as the next generation power grid paradigm which enables the transfer of real time information between the utility company and the consumer via smart meter and advanced metering infrastructure (AMI). These information facilitate many services for both, such as automatic meter reading, demand side management, and time-of-use (TOU) pricing. However, there have been growing security and privacy concerns over smart grid systems, which are built with both smart and legacy information and operational technologies. Intrusion detection is a critical security service for smart grid systems, alerting the system operator for the presence of ongoing attacks. Hence, there has been lots of research conducted on intrusion detection in the past, especially anomaly-based intrusion detection. Problems emerge when common approaches of pattern recognition are used for imbalanced data which represent much more data instances belonging to normal behaviors than to attack ones, and these approaches cause low detection rates for minority classes. In this paper, we study various machine learning models to overcome this drawback by using CIC-IDS2018 dataset [1]. 
    more » « less
  4. Android, the most dominant Operating System (OS), experiences immense popularity for smart devices for the last few years. Due to its' popularity and open characteristics, Android OS is becoming the tempting target of malicious apps which can cause serious security threat to financial institutions, businesses, and individuals. Traditional anti-malware systems do not suffice to combat newly created sophisticated malware. Hence, there is an increasing need for automatic malware detection solutions to reduce the risks of malicious activities. In recent years, machine learning algorithms have been showing promising results in classifying malware where most of the methods are shallow learners like Logistic Regression (LR). In this paper, we propose a deep learning framework, called Droid-NNet, for malware classification. However, our proposed method Droid-NNet is a deep learner that outperforms existing cutting-edge machine learning methods. We performed all the experiments on two datasets (Malgenome-215 & Drebin-215) of Android apps to evaluate Droid-NNet. The experimental result shows the robustness and effectiveness of Droid-NNet. 
    more » « less
  5. Under the trend of deeper renewable energy integration, active distribution networks are facing increasing uncertainty and security issues, among which the arcing fault detection (AFD) has baffled researchers for years. Existing machine learning based AFD methods are deficient in feature extraction and model interpretability. To overcome these limitations in learning algorithms, we have designed a way to translate the non-transparent machine learning prediction model into an implementable logic for AFD. Moreover, the AFD logic is tested under different fault scenarios and realistic renewable generation data, with the help of our self-developed AFD software. The performance from various tests shows that the interpretable prediction model has high accuracy, dependability, security and speed under the integration of renewable energy. 
    more » « less