skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on January 27, 2026

Title: A Kinetic Scout Approach Accelerates Targeted Protein Degrader Development
Bifunctional molecules such as targeted protein degraders induce proximity to promote gain‐of‐function pharmacology. These powerful approaches have gained broad traction across academia and the pharmaceutical industry, leading to an intensive focus on strategies that can accelerate their identification and optimization. We and others have previously used chemical proteomics to map degradable target space, and these datasets have been used to develop and train multiparameter models to extend degradability predictions across the proteome. In this study, we now turn our attention to develop generalizable chemistry strategies to accelerate the development of new bifunctional degraders. We implement lysine‐targeted reversible‐covalent chemistry to rationally tune the binding kinetics at the protein‐of‐interest across a set of 25 targets. We define an unbiased workflow consisting of global proteomics analysis, IP/MS of ternary complexes and the E‐STUB assay, to mechanistically characterize the effects of ligand residence time on targeted protein degradation and formulate hypotheses about the rate‐limiting step of degradation for each target. Our key finding is that target residence time is a major determinant of degrader activity, and this can be rapidly and rationally tuned through the synthesis of a minimal number of analogues to accelerate early degrader discovery and optimization.  more » « less
Award ID(s):
2339705
PAR ID:
10580425
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Angewandte Chemie International Edition
Volume:
64
Issue:
5
ISSN:
1433-7851
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Targeted protein degradation (TPD) is a powerful strategy for targeting and eliminating disease-causing proteins. While heterobifunctional Proteolysis-Targeting Chimeras (PROTACs) are more modular, the rational design of monovalent or molecular glue degraders remains challenging. In this study, we generated a small library of BET-domain inhibitor JQ1 analogs bearing elaborated electrophilic handles to identify permissive covalent degradative handles and E3 ligase pairs. We identified an elaborated fumaramide handle that, when appended onto JQ1, led to the proteasome-dependent degradation of BRD4. Further characterization revealed that the E3 ubiquitin ligase CUL4DCAF16—a common E3 ligase target of electrophilic degraders—was responsible for BRD4 loss by covalently targeting C173 on DCAF16. While this original fumaramide handle, when appended onto other protein-targeting ligands, did not accommodate the degradation of other neo-substrates, a truncated version of this handle attached to JQ1 was still capable of degrading BRD4, now through targeting both C173 and C178. This truncated fumaramide handle, when appended on various protein targeting ligands, and was also more permissive in degrading other neo-substrates, including CDK4/6, SMARCA2/4, and the androgen receptor (AR). We further demonstrated that this optimized truncated fumaramide handle, when transplanted onto an AR DNA binding domain-targeting ligand, could degrade both AR and the undruggable truncation variant of AR, AR-V7, in androgen-independent prostate cancer cells in a DCAF16-dependent manner. Overall, we have identified a unique DCAF16-targeting covalent degradative handle that can be transplanted across several protein-targeting ligands to induce the degradation of their respective targets for the modular design of monovalent or bifunctional degraders. 
    more » « less
  2. Abstract Recently, targeted degradation has emerged as a powerful therapeutic modality. Relying on “event-driven” pharmacology, proteolysis targeting chimeras (PROTACs) can degrade targets and are superior to conventional inhibitors against undruggable proteins. Unfortunately, PROTAC discovery is limited by warhead scarcity and laborious optimization campaigns. To address these shortcomings, analogous protein-based heterobifunctional degraders, known as bioPROTACs, have been developed. Compared to small-molecule PROTACs, bioPROTACs have higher success rates and are subject to fewer design constraints. However, the membrane impermeability of proteins severely restricts bioPROTAC deployment as a generalized therapeutic modality. Here, we present an engineered bioPROTAC template able to complex with cationic and ionizable lipids via electrostatic interactions for cytosolic delivery. When delivered by biocompatible lipid nanoparticles, these modified bioPROTACs can rapidly degrade intracellular proteins, exhibiting near-complete elimination (up to 95% clearance) of targets within hours of treatment. Our bioPROTAC format can degrade proteins localized to various subcellular compartments including the mitochondria, nucleus, cytosol, and membrane. Moreover, substrate specificity can be easily reprogrammed, allowing modular design and targeting of clinically-relevant proteins such as Ras, Jnk, and Erk. In summary, this work introduces an inexpensive, flexible, and scalable platform for efficient intracellular degradation of proteins that may elude chemical inhibition. 
    more » « less
  3. null (Ed.)
    Abstract Mammalian cells process information through coordinated spatiotemporal regulation of proteins. Engineering cellular networks thus relies on efficient tools for regulating protein levels in specific subcellular compartments. To address the need to manipulate the extent and dynamics of protein localization, we developed a platform technology for the target-specific control of protein destination. This platform is based on bifunctional molecules comprising a target-specific nanobody and universal sequences determining target subcellular localization or degradation rate. We demonstrate that nanobody-mediated localization depends on the expression level of the target and the nanobody, and the extent of target subcellular localization can be regulated by combining multiple target-specific nanobodies with distinct localization or degradation sequences. We also show that this platform for nanobody-mediated target localization and degradation can be regulated transcriptionally and integrated within orthogonal genetic circuits to achieve the desired temporal control over spatial regulation of target proteins. The platform reported in this study provides an innovative tool to control protein subcellular localization, which will be useful to investigate protein function and regulate large synthetic gene circuits. 
    more » « less
  4. Recent advances in mass spectrometry (MS)-based proteomics have enabled tremendous progress in the understanding of cellular mechanisms, disease progression, and the relationship between genotype and phenotype. Though many popular bioinformatics methods in proteomics are derived from other omics studies, novel analysis strategies are required to deal with the unique characteristics of proteomics data. In this review, we discuss the current developments in the bioinformatics methods used in proteomics and how they facilitate the mechanistic understanding of biological processes. We first introduce bioinformatics software and tools designed for mass spectrometry-based protein identification and quantification, and then we review the different statistical and machine learning methods that have been developed to perform comprehensive analysis in proteomics studies. We conclude with a discussion of how quantitative protein data can be used to reconstruct protein interactions and signaling networks. 
    more » « less
  5. Abstract Target validation is key to the development of protein degrading molecules such as proteolysis‐targeting chimeras (PROTACs) to identify cellular proteins amenable for induced degradation by the ubiquitin‐proteasome system (UPS). Previously the HaloPROTAC system was developed to screen targets of PROTACs by linking the chlorohexyl group with the ligands of E3 ubiquitin ligases VHL and cIAP1 to recruit target proteins fused to the HaloTag for E3‐catalyzed ubiquitination. Reported here are HaloPROTACs that engage the cereblon (CRBN) E3 to ubiquitinate and degrade HaloTagged proteins. A focused library of CRBN‐pairing HaloPROTACs was synthesized and screened to identify efficient degraders of EGFP‐HaloTag fusion with higher activities than VHL‐engaging HaloPROTACs at sub‐micromolar concentrations of the compound. The CRBN‐engaging HaloPROTACs broadens the scope of the E3 ubiquitin ligases that can be utilized to screen suitable targets for induced protein degradation in the cell. 
    more » « less