skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Metal Halide Perovskite Solar Module Encapsulation Using Polyolefin Elastomers: The Role of Morphology in Preventing Delamination
The development of perovskite solar cells (PSCs) has ushered in a new era of solar technology, characterized by its exceptional efficiency and cost-effective production. However, the soft and fragile nature of perovskites makes module encapsulation challenging. Polyolefin elastomers (POEs) have been reported to be promising encapsulants for perovskite modules. However, little research exists on identifying criteria among different types of POEs as encapsulants. Here, two POEs with different morphologies were compared as encapsulants. The first POE crystallizes during encapsulation (crystal content ∼40%), and the resulting shrinkage or warpage leads to delamination, causing minimodule failure. In contrast, perovskite minimodules encapsulated with a mostly amorphous POE exhibited better reliability and reproducibility. The best perovskite minimodules passed the thermal cycling test for 240 cycles between −40 and 85 °C and the damp heat test for 1419 h, according to the IEC 61215 standard. This study highlights the importance of the morphology of encapsulants in achieving high-quality encapsulation. Published by the American Physical Society2024  more » « less
Award ID(s):
2050357
PAR ID:
10580836
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
APS
Date Published:
Journal Name:
PRX Energy
Volume:
3
Issue:
2
ISSN:
2768-5608
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. No AbstractPublished by the Jagiellonian University2024authors 
    more » « less
  2. Dark matter may induce an event in an Earth-based detector, and its event rate is predicted to show an annual modulation as a result of the Earth’s orbital motion around the Sun. We searched for this modulation signature using the ionization signal of the DarkSide-50 liquid argon time projection chamber. No significant signature compatible with dark matter is observed in the electron recoil equivalent energy range above 40 eV ee , the lowest threshold ever achieved in such a search. Published by the American Physical Society2024 
    more » « less
  3. We simulate the Lipkin-Meshkov-Glick model using the variational-quantum-eigensolver algorithm on a neutral atom quantum computer. We test the ground-state energy of spin systems with up to 15 spins. Two different encoding schemes are used: an individual spin encoding where each spin is represented by one qubit, and an efficient Gray code encoding scheme that only requires a number of qubits that scales with the logarithm of the number of spins. This more efficient encoding, together with zero-noise extrapolation techniques, is shown to improve the fidelity of the simulated energies with respect to exact solutions. Published by the American Physical Society2025 
    more » « less
  4. In present work, we present a couple-channel formalism for the description of tunneling time of a quantum particle through a composite compound with multiple energy levels or a complex structure that can be reduced to a quasi-one-dimensional multiple-channel system. Published by the American Physical Society2024 
    more » « less
  5. This paper is associated with a poster winner of a 2023 American Physical Society's Division of Fluid Dynamics (DFD) Milton van Dyke Award for work presented at the DFD Gallery of Fluid Motion. The original poster is available online at the Gallery of Fluid Motion, . Published by the American Physical Society2024 
    more » « less