skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on April 1, 2026

Title: Simulation of Spring Discharge Using Deep Learning, Considering the Spatiotemporal Variability of Precipitation
Abstract Sparse precipitation data in karst catchments challenge hydrologic models to accurately capture the spatial and temporal relationships between precipitation and karst spring discharge, hindering robust predictions. This study addresses this issue by employing a coupled deep learning model that integrates a variation autoencoder (VAE) for augmenting precipitation and a long short‐term memory (LSTM) network for karst spring discharge prediction. The VAE contributes by generating synthetic precipitation data through an encoding‐decoding process. This process generalizes the observed precipitation data by deriving joint latent distributions with improved preservation of temporal and spatial correlations of the data. The combined VAE‐generated precipitation and observation data are used to train and test the LSTM to predict spring discharge. Applied to the Niangziguan spring catchment in northern China, the average performance of NSE, root mean square error, mean absolute error, mean absolute percentage error, and log NSE of our coupled VAE/LSTM model reached 0.93, 0.26, 0.15, 1.8, and 0.92, respectively, yielding 145%, 52%, 63%, 70% and 149% higher than an LSTM model using only observations. We also explored temporal and spatial correlations in the observed data and the impact of different ratios of VAE‐generated precipitation data to actual data on model performances. This study also evaluated the effectiveness of VAE‐augmented data on various deep‐learning models and compared VAE with other data augmentation techniques. We demonstrate that the VAE offers a novel approach to address data scarcity and uncertainty, improving learning generalization and predictive capability of various hydrological models. However, we recognize that innovations to address hydrologic problems at different scales remain to be explored.  more » « less
Award ID(s):
1933779
PAR ID:
10581013
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
American Geophysical Union
Date Published:
Journal Name:
Water Resources Research
Volume:
61
Issue:
4
ISSN:
0043-1397
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Karst groundwater is a critical freshwater resource for numerous regions worldwide. Monitoring and predicting karst spring discharge is essential for effective groundwater management and the preservation of karst ecosystems. However, the high heterogeneity and karstification pose significant challenges to physics-based models in providing robust predictions of karst spring discharge. In this study, an interpretable multi-step hybrid deep learning model called selective EEMD-TFT is proposed, which adaptively integrates temporal fusion transformers (TFT) with ensemble empirical mode decomposition (EEMD) for predicting karst spring discharge. The selective EEMD-TFT hybrid model leverages the strengths of both EEMD and TFT techniques to learn inherent patterns and temporal dynamics from nonlinear and nonstationary signals, eliminate redundant components, and emphasize useful characteristics of input variables, leading to the improvement of prediction performance and efficiency. It consists of two stages: in the first stage, the daily precipitation data is decomposed into multiple intrinsic mode functions using EEMD to extract valuable information from nonlinear and nonstationary signals. All decomposed components, temperature and categorical date features are then fed into the TFT model, which is an attention- based deep learning model that combines high-performance multi-horizon prediction and interpretable insights into temporal dynamics. The importance of input variables will be quantified and ranked. In the second stage, the decomposed precipitation components with high importance are selected to serve as the TFT model’s input features along with temperature and categorical date variables for the final prediction. Results indicate that the selective EEMD-TFT model outperforms other sequence-to-sequence deep learning models, such as LSTM and single TFT models, delivering reliable and robust prediction performance. Notably, it maintains more consistent prediction performance at longer forecast horizons compared to other sequence-to-sequence models, highlighting its capacity to learn complex patterns from the input data and efficiently extract valuable information for karst spring prediction. An interpretable analysis of the selective EEMD-TFT model is conducted to gain insights into relationships among various hydrological processes and analyze temporal patterns. 
    more » « less
  2. Karst aquifers are important groundwater resources that supply drinking water for approximately 25 % of the world’s population. Their complex hydrogeological structures, dual-flow regimes, and highly heterogeneous flow pose significant challenges for accurate hydrodynamic modeling and sustainable management. Traditional modeling approaches often struggle to capture the intricate spatial dependencies and multi-scale temporal patterns inherent in karst systems, particularly the interactions between rapid conduit flow and slower matrix flow. This study proposes a novel multi-scale dynamic graph attention network integrated with long short-term memory model (GAT-LSTM) to innovatively learn and integrate spatial and temporal dependencies in karst systems for forecasting spring discharge. The model introduces several innovative components: (1) graph-based neural networks with dynamic edge-weighting mechanism are proposed to learn and update spatial dependencies based on both geographic distances and learned hydrological relationships, (2) a multi-head attention mechanism is adopted to capture different aspects of spatial relationships simultaneously, and (3) a hierarchical temporal architecture is incorporated to process hydrological temporal patterns at both monthly and seasonal scales with an adaptive fusion mechanism for final results. These features enable the proposed model to effectively account for the dual-flow dynamics in karst systems, where rapid conduit flow and slower matrix flow coexist. The newly proposed model is applied to the Barton Springs of the Edwards Aquifer in Texas. The results demonstrate that it can obtain more accurate and robust prediction performance across various time steps compared to traditional temporal and spatial deep learning approaches. Based on the multi-scale GAT-LSTM model, a comprehensive ablation analysis and permutation feature important are conducted to analyze the relative contribution of various input variables on the final prediction. These findings highlight the intricate nature of karst systems and demonstrate that effective spring discharge prediction requires comprehensive monitoring networks encompassing both primary recharge contributors and supplementary hydrological features that may serve as valuable indicators of system-wide conditions. 
    more » « less
  3. Abstract In many regions globally, snowmelt‐recharged mountainous karst aquifers serve as crucial sources for municipal and agricultural water supplies. In these watersheds, complex interplay of meteorological, topographical, and hydrogeological factors leads to intricate recharge‐discharge pathways. This study introduces a spatially distributed deep learning precipitation‐runoff model that combines Convolutional Long Short‐Term Memory (ConvLSTM) with a spatial attention mechanism. The effectiveness of the deep learning model was evaluated using data from the Logan River watershed and subwatersheds, a characteristically karst‐dominated hydrological system in northern Utah. Compared to the ConvLSTM baseline, the inclusion of a spatial attention mechanism improved performance for simulating discharge at the watershed outlet. Analysis of attention weights in the trained model unveiled distinct areas contributing the most to discharge under snowmelt and recession conditions. Furthermore, fine‐tuning the model at subwatershed scales provided insights into cross‐subwatershed subsurface connectivity. These findings align with results obtained from detailed hydrogeochemical tracer studies. Results highlight the potential of the proposed deep learning approach to unravel the complexities of karst aquifer systems, offering valuable insights for water resource management under future climate conditions. Furthermore, results suggest that the proposed explainable, spatially distributed, deep learning approach to hydrologic modeling holds promise for non‐karstic watersheds. 
    more » « less
  4. Accurate estimation of surface precipitation with high spatial and temporal resolution is critical for decision making regarding severe weather and water resources management. Polarimetric weather radar is the main operational instrument used for quantitative precipitation estimation (QPE). However, conventional parametric radar QPE algorithms such as the radar reflectivity (Z) and rain rate (R) relations cannot fully represent clouds and precipitation dynamics due to their dependency on local raindrop size distributions and the inherent parameterization errors. This article develops four deep learning (DL) models for polarimetric radar QPE (i.e., RQPENetD1, RQPENetD2, RQPENetV, RQPENetR) using different core building blocks. In particular, multi-dimensional polarimetric radar observations are utilized as input and surface gauge measurements are used as training labels. The feasibility and performance of these DL models are demonstrated and quantified using U.S. Weather Surveillance Radar - 1988 Doppler (WSR-88D) observations near Melbourne, Florida. The experimental results show that the dense blocks-based models (i.e., RQPENetD1 and RQPENetD2) have better performance than residual blocks, RepVGG blocks-based models (i.e., RQPENetR and RQPENetV) and five traditional Z-R relations. RQPENetD1 has the best quantitative performance scores, with a mean absolute error (MAE) of 1.58 mm, root mean squared error (RMSE) of 2.68 mm, normalized standard error (NSE) of 26%, and correlation of 0.92 for hourly rainfall estimates using independent rain gauge data as references. These results suggest that deep learning performs well in mapping the connection between polarimetric radar observations aloft and surface rainfall. 
    more » « less
  5. ABSTRACT Analysis of PRISM and SNOTEL station data paired with USGS streamflow gage data in the western United States shows that, in snow‐dominated mountainous watersheds, streamflow regimes differ between watersheds with karst geology and their non‐karst neighbours. These carbonate aquifers exhibit a spectrum of flow paths encompassing karst conduits, including large fractures or voids that transmit water readily to springs and other surface waters, and matrix flow paths through soils, highly fractured bedrock, or porous media bedrock grains. A well‐connected karst aquifer will discharge a large portion of its accumulated precipitation to surface water via springs and other groundwater flow paths on an annual scale, exhibiting a lagged response to precipitation presenting as a “memory effect” in hydrograph time series. These patterns were observed in the hydrologic records of gaged watersheds with exposed or near‐surface carbonate layers accounting for > 30% of their drainage area. In western snow‐dominated watersheds, where paired streamflow and SNOTEL data are available, analysis of the precipitation and flow time series shows low‐flow volume is strongly related to karst aquifer conditions and winter precipitation when compared to low‐flow volumes present in non‐karst watersheds, which have a complex relationship to multiple driving metrics. Analysis of normalised streamflow and cumulative precipitation in karst watersheds show that low‐flow conditions are highly dependent on the preceding winter precipitation and streamflow in both wet and dry periods. In non‐karst watersheds, increased precipitation primarily impacts high‐flow, spring runoff volumes with no clear relationship to low‐flow periods. When comparing cumulative streamflow and precipitation volumes within each water year and over longer timescales, karst watersheds show the potential filling and draining of large amounts of karst storage, whereas non‐karst watersheds demonstrate a more stable storage regime. Communities in many western US watersheds are dependent on snow‐dominated karst watersheds for their water supply. This analysis, using widely available hydrologic data, can provide insight into the recharge and storage processes within these watersheds, improve our ability to assess current flow regimes, anticipate the impacts of climate change on water availability, and help manage water supplies. 
    more » « less