skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Data from: Mapping the topological proximity-induced gap in multiterminal Josephson junctions
Multiterminal Josephson junctions (MTJJs), devices in which a normal metal is in contact with three or more superconducting leads, have been proposed as artificial analogs of topological crystals.  The topological nature of MTJJs manifests as a modulation of the quasiparticle density of states (DOS) in the normal metal that may be probed by tunneling measurements.  We show that one can reveal this modulation by measuring the resistance of diffusive MTJJs with normal contacts, which shows rich structure as a function of the phase differences $$\{\phi_i \}$$.  Our approach demonstrates a simple yet powerful technique for exploring topological effects in MTJJs.  more » « less
Award ID(s):
2303536
PAR ID:
10581094
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Dryad
Date Published:
Subject(s) / Keyword(s):
FOS: Physical sciences FOS: Physical sciences charge transport differential resistance induced flux
Format(s):
Medium: X Size: 6954610 bytes
Size(s):
6954610 bytes
Right(s):
Creative Commons Zero v1.0 Universal
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Chirality has been a property of central importance in physics, chemistry and biology for more than a century. Recently, electrons were found to become spin polarized after transmitting through chiral molecules, crystals, and their hybrids. This phenomenon, called chirality-induced spin selectivity (CISS), presents broad application potentials and far-reaching fundamental implications involving intricate interplays among structural chirality, topological states, and electronic spin and orbitals. However, the microscopic picture of how chiral geometry influences electronic spin remains elusive, given the negligible spin-orbit coupling (SOC) in organic molecules. In this work, we address this issue via a direct comparison of magnetoconductance (MC) measurements on magnetic semiconductor-based chiral molecular spin valves with normal metal electrodes of contrasting SOC strengths. The experiment reveals that a heavy-metal electrode provides SOC to convert the orbital polarization induced by the chiral molecular structure tospinpolarization. Our results illustrate the essential role of SOC in the metal electrode for the CISS spin valve effect. A tunneling model with a magnetochiral modulation of the potential barrier is shown to quantitatively account for the unusual transport behavior. 
    more » « less
  2. Colossal negative magnetoresistance is a well-known phenomenon, notably observed in hole-doped ferromagnetic manganites. It remains a major research topic due to its potential in technological applications. In contrast, topological semimetals show large but positive magnetoresistance, originated from the high-mobility charge carriers. Here, we show that in the highly electron-doped region, the Dirac semimetal CeSbTe demonstrates similar properties as the manganites. CeSb0.11Te1.90hosts multiple charge density wave modulation vectors and has a complex magnetic phase diagram. We confirm that this compound is an antiferromagnetic Dirac semimetal. Despite having a metallic Fermi surface, the electronic transport properties are semiconductor-like and deviate from known theoretical models. An external magnetic field induces a semiconductor metal–like transition, which results in a colossal negative magnetoresistance. Moreover, signatures of the coupling between the charge density wave and a spin modulation are observed in resistivity. This spin modulation also produces a giant anomalous Hall response. 
    more » « less
  3. Two-dimensional (2D) transition metal dichalcogenides (TMDs) is a versatile class of quantum materials of interest to various fields including, e.g., nanoelectronics, optical devices, and topological and correlated quantum matter. Tailoring the electronic properties of TMDs is essential to their applications in many directions. Here, we report that a highly controllable and uniform on-chip 2D metallization process converts a class of atomically thin TMDs into robust superconductors, a property belonging to none of the starting materials. As examples, we demonstrate the introduction of superconductivity into a class of 2D air-sensitive topological TMDs, including monolayers of T d WTe 2 , 1 T MoTe 2 , and 2 H MoTe 2 , as well as their natural and twisted bilayers, metallized with an ultrathin layer of palladium. This class of TMDs is known to exhibit intriguing topological phases ranging from topological insulator, Weyl semimetal to fractional Chern insulator. The unique, high-quality two-dimensional metallization process is based on our recent findings of the long-distance, non-Fickian in-plane mass transport and chemistry in 2D that occur at relatively low temperatures and in devices fully encapsulated with inert insulating layers. Highly compatible with existing nanofabrication techniques for van der Waals stacks, our results offer a route to designing and engineering superconductivity and topological phases in a class of correlated 2D materials. Published by the American Physical Society2024 
    more » « less
  4. We highlight recent advances in the theory, materials fabrication, and experimental characterization of strongly correlated and topological states in [111] oriented transition metal oxide thin films and heterostructures, which are notoriously difficult to realize compared to their [001] oriented counterparts. We focus on two classes of complex oxides, with the chemical formulas ABO3 and A2B2O7, where the B sites are occupied by an open-shell transition metal ion with a local moment and the A sites are typically a rare earth element. The [111] oriented quasi-two-dimensional lattices derived from these parent compound lattices can exhibit peculiar geometries and symmetries, namely, a buckled honeycomb lattice, as well as kagome and triangular lattices. These lattice motifs form the basis for emergent strongly correlated and topological states expressed in exotic magnetism, various forms of orbital ordering, topological insulators, topological semimetals, quantum anomalous Hall insulators, and quantum spin liquids. For transition metal ions with high atomic number, spin–orbit coupling plays a significant role and may give rise to additional topological features in the electronic band structure and in the spectrum of magnetic excitations. We conclude this perspective by articulating open challenges and opportunities in this actively developing field. 
    more » « less
  5. Within the field of elastic metamaterials, topological metamaterials have recently received much attention due to their ability to host topologically robust edge states. Introducing local resonators to these metamaterials also opens the door for many applications such as energy harvesting and reconfigurable metamaterials. However, the interactions between phenomena from local resonance and modulation patterning are currently unknown. This work fills that gap by studying multiple cases of spatially modulated metamaterials with local resonators to reveal the mechanisms behind bandgap formation. Their dispersion relations are determined analytically for infinite chains and validated numerically using eigenvalue analysis. The inverse method is used to determine the imaginary wavenumber components from which each bandgap is characterized by its formation mechanism. The topological nature of the bandgaps is also explored through calculating the Chern number and integrated density of states. The band structures are obtained for various sources of modulation as well as multiple resonator parameters to illustrate how both local resonance and modulation patterning interact together to influence the band structure. Other unique features of these metamaterials are further demonstrated through the mode shapes obtained using the eigenvectors. The results reveal a complex band structure that is highly tunable, and the observations given here can be used to guide designers in choosing resonator parameters and patterning to fit a variety of applications. 
    more » « less