In magnetostrophic rotating magnetoconvection, a fluid layer heated from below and cooled from above is equidominantly influenced by the Lorentz and the Coriolis forces. Strong rotation and magnetism each act separately to suppress thermal convective instability. However, when they act in concert and are near in strength, convective onset occurs at less extreme Rayleigh numbers ( R a , thermal forcing) in the form of a stationary, large-scale, inertia-less, inviscid magnetostrophic mode. Estimates suggest that planetary interiors are in magnetostrophic balance, fostering the idea that magnetostrophic flow optimizes dynamo generation. However, it is unclear if such a mono-modal theory is realistic in turbulent geophysical settings. Donna Elbert first discovered that there is a range of Ekman ( E k , rotation) and Chandrasekhar ( C h , magnetism) numbers, in which stationary large-scale magnetostrophic and small-scale geostrophic modes coexist. We extend her work by differentiating five regimes of linear stationary rotating magnetoconvection and by deriving asymptotic solutions for the critical wavenumbers and Rayleigh numbers. Coexistence is permitted if E k < 16 / ( 27 π ) 2 and C h ≥ 27 π 2 . The most geophysically relevant regime, the Elbert range , is bounded by the Elsasser numbers 4 3 ( 4 4 π 2   E k ) 1 / 3 ≤ Λ ≤ 1 2 ( 3 4 π 2 E k ) − 1 / 3 . Laboratory and Earth’s core predictions both exhibit stationary, oscillatory, and wall-attached multi-modality within the Elbert range. 
                        more » 
                        « less   
                    This content will become publicly available on March 1, 2026
                            
                            The Elbert range of magnetostrophic convection. II. Comparing linear theory to nonlinear low- Rm simulations
                        
                    
    
            The magnetostrophic dynamo hypothesis has greatly influenced planetary dynamo research. Many magnetostrophic dynamo theories are founded upon the linear stability analysis by Chandrasekhar and Elbert, and by the canonical laboratory photographs taken by Nakagawa that show a significant enlargement of the convective flow scales in the magnetostrophic regime of liquid metal rotating magnetoconvection (RMC). We test whether these linear predictions are relevant for the nonlinear RMC system by exploring the five possible regimes using direct numerical simulations of RMC in the low magnetic Reynolds number quasi-static approximation. We map out the heat and momentum transport in these regimes, look at the flow structures and focus especially on the length scales. We have also included numerical counterparts of Nakagawa’s experiments and our results show an excellent agreement with three of these cases and linear theory. However, agreement with Nakagawa is not found in the magnetostrophic case: no enlargement of scales is observed, but still in good agreement with linear theory. Oscillatory bulk modes dominate all the RMC cases in which they exist, thus, suggesting that oscillatory convective flows may dominate all the other convective modes in planetary cores and may provide the motions that primarily generate planetary dynamo action. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2143939
- PAR ID:
- 10581130
- Publisher / Repository:
- Royal Society
- Date Published:
- Journal Name:
- Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
- Volume:
- 481
- Issue:
- 2310
- ISSN:
- 1364-5021
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Verzicco, R. (Ed.)We present the first detailed thermal and velocity field characterization of convection in a rotating cylindrical tank of liquid gallium, which has thermophysical properties similar to those of planetary core fluids. Our laboratory experiments, and a closely associated direct numerical simulation, are all carried out in the regime prior to the onset of steady convective modes. This allows us to study the oscillatory convective modes, sidewall modes and broadband turbulent flow that develop in liquid metals before the advent of steady columnar modes. Our thermo-velocimetric measurements show that strongly inertial, thermal wind flows develop, with velocities reaching those of non-rotating cases. Oscillatory bulk convection and wall modes coexist across a wide range of our experiments, along with strong zonal flows that peak in the Stewartson layer, but that extend deep into the fluid bulk in the higher supercriticality cases. The flows contain significant time-mean helicity that is anti-symmetric across the midplane, demonstrating that oscillatory liquid metal convection contains the kinematic components to sustain system-scale dynamo generation.more » « less
- 
            The interplay between convective, rotational and magnetic forces defines the dynamics within the electrically conducting regions of planets and stars. Yet their triadic effects are separated from one another in most studies, arguably due to the richness of each subset. In a single laboratory experiment, we apply a fixed heat flux, two different magnetic field strengths and one rotation rate, allowing us to chart a continuous path through Rayleigh–Bénard convection (RBC), two regimes of magnetoconvection, rotating convection and two regimes of rotating magnetoconvection, before finishing back at RBC. Dynamically rapid transitions are determined to exist between jump rope vortex states, thermoelectrically driven magnetoprecessional modes, mixed wall- and oscillatory-mode rotating convection and a novel magnetostrophic wall mode. Thus, our laboratory ‘pub crawl’ provides a coherent intercomparison of the broadly varying responses arising as a function of the magnetorotational forces imposed on a liquid-metal convection system.more » « less
- 
            Abstract Diffusive convection can occur when two constituents of a stratified fluid have opposing effects on its stratification and different molecular diffusivities. This form of convection arises for the particular temperature and salinity stratification in the Arctic Ocean and is relevant to heat fluxes. Previous studies have suggested that planetary rotation may influence diffusive–convective heat fluxes, although the precise physical mechanisms and regime of rotational influence are not well understood. A linear stability analysis of a temperature and salinity interface bounded by two mixed layers is performed here to understand the stability properties of a diffusive–convective system, and in particular the transition from nonrotating to rotationally controlled heat transfer. Rotation is shown to stabilize diffusive convection by increasing the critical Rayleigh number to initiate instability. In the rotationally controlled regime, a −4/3 power law is found between the critical Rayleigh number and the Ekman number, similar to the scaling for rotating thermal convection. The transition from nonrotating to rotationally controlled convection, and associated drop in heat fluxes, is predicted to occur when the thermal interfacial thickness exceeds about 4 times the Ekman layer thickness. A vorticity budget analysis indicates how baroclinic vorticity production is counteracted by the tilting of planetary vorticity by vertical shear, which accounts for the stabilization effect of rotation. Finally, direct numerical simulations yield generally good agreement with the linear stability analysis. This study, therefore, provides a theoretical framework for classifying regimes of rotationally controlled diffusive–convective heat fluxes, such as may arise in some regions of the Arctic Ocean.more » « less
- 
            Dynamos driven by rotating convection in the plane layer geometry are investigated numerically for a range of Ekman number ( $$E$$ ), magnetic Prandtl number ( $Pm$ ) and Rayleigh number ( $Ra$ ). The primary purpose of the investigation is to compare results of the simulations with previously developed asymptotic theory that is applicable in the limit of rapid rotation. We find that all of the simulations are in the quasi-geostrophic regime in which the Coriolis and pressure gradient forces are approximately balanced at leading order, whereas all other forces, including the Lorentz force, act as perturbations. Agreement between simulation output and asymptotic scalings for the energetics, flow speeds, magnetic field amplitude and length scales is found. The transition from large-scale dynamos to small-scale dynamos is well described by the magnetic Reynolds number based on the small convective length scale, $$\widetilde {Rm}$$ , with large-scale dynamos preferred when $$\widetilde {Rm} \lesssim O(1)$$ . The magnitude of the large-scale magnetic field is observed to saturate and become approximately constant with increasing Rayleigh number. Energy spectra show that all length scales present in the flow field and the small-scale magnetic field are consistent with a scaling of $$E^{1/3}$$ , even in the turbulent regime. For a fixed value of $$E$$ , we find that the viscous dissipation length scale is approximately constant over a broad range of $Ra$ ; the ohmic dissipation length scale is approximately constant within the large-scale dynamo regime, but transitions to a $$\widetilde {Rm}^{-1/2}$$ scaling in the small-scale dynamo regime.more » « less
 An official website of the United States government
An official website of the United States government 
				
			
