Heterogenized molecular catalysts have shown interesting activities in different chemical transformations. In our previous studies, a molecular catalyst, Re(bpy)(CO)3Cl where bpy is 2,2’-bipyridine, was covalently attached to silica surfaces via an amide linkage for use in photocatalytic CO2 reduction. Derivatizing the bpy ligand with electron-withdrawing amide groups led to detrimental effects on the catalytic activity of Re(bpy)(CO)3Cl. In this study, an alkyl amine linkage is utilized to attach Re(bpy)(CO)3Cl onto SiO2 in order to eliminate the detrimental effects of the amide linkage by breaking the conjugation between the bpy ligand and the amide group. However, the heterogenized Re(I) catalyst containing the alkyl amine linkage demonstrates even lower activity than the one containing the amide linkage in photocatalytic CO2 reduction. Infrared studies suggest that the presence of the basic amine group led to the formation of a photocatalytically inactive Re(I)-OH species on SiO2. Furthermore, the amine group likely contributes to the stabilization of a surface Re(I)-carboxylato species formed upon light irradiation, resulting in the low activity of the heterogenized Re(I) catalyst containing the alkyl amine linkage.
more »
« less
Differential impact on oral cancer cell viability for three carboxylate-stabilized rhenium(I) tricarbonyl centers supported by 2,2′-bipyridine: One-pot synthesis, a structure, and proton-catalyzed carboxylate ligand substitution
A set of six carboxylate-stabilized rhenium(I) tricarbonyl complexes supported by a 2,2’-bipyridine (bpy) ligand, Re(O2CR)(CO)3(bpy) (R = H, CH3, CHF2, R- or S CHBrCH(CH3)2, and C5H11), were prepared by acidolysis of the complex Re(OCO2C5H11)(CO)3(bpy) with the appropriate carboxylic acid and characterized by 1H and 13C-{1H} NMR and IR spectroscopy. The crystal structure of the complex, Re[R-O2CCHBrCH(CH3)2](CO)3(bpy), was determined by X-ray crystallography. Cytotoxicity results correlate positively with the Kb value of the carboxylate ligand. Apparently, the more substitutionally inert the carboxylate-stabilized complex is in a chloride-rich environment (similar to extracellular fluid) the greater the amount of cytotoxic [Re(CO)3(bpy)(H2O)]+ that forms in the cytosol.
more »
« less
- Award ID(s):
- 2117792
- PAR ID:
- 10581491
- Publisher / Repository:
- Elsevier
- Date Published:
- Journal Name:
- Inorganica Chimica Acta
- Volume:
- 568
- Issue:
- C
- ISSN:
- 0020-1693
- Page Range / eLocation ID:
- 122105
- Subject(s) / Keyword(s):
- Chiral-carboxylate rhenium(I) tricarbonyl complex crystal structure
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The complex, [{[Mn(bpy)(CO) 3 ] 2 }(μ-CN)] + (Mn2CN+), has previously been shown to photochemically reduce CO 2 to CO. The detailed mechanism behind its reactivity was not elucidated. Herein, the photoevolution of this reaction is studied in acetonitrile (MeCN) using IR and UV-vis spectroscopy. Samples were excited into the Mn I → π* bpy metal-to-ligand charge transfer (MLCT) absorption band triggering CO loss, and rapid MeCN solvent ligation at the open coordination site. It is concluded that this process occurs selectively at the Mn axial ligation site that is trans to the C-end of the bridging cyanide. Upon further photolysis, the metal–metal bonded dimeric species, [(CO) 3 (bpy)Mn–Mn(bpy)(CO) 3 ] (Mn–Mn) is observed to form under anaerobic conditions. The presence of this dimeric species coincides with the observation of CO production. When oxygen is present, CO 2 photoreduction does not occur, which is attributed to the inability of Mn2CN+ to convert to the metal–metal bonded dimer. Photolysis experiments, where the Mn–Mn dimer is formed photochemically under argon first and then exposed to CO 2 , reveal that it is the radical species, [Mn(bpy)(CO) 3 ˙ ] ( Mn˙ ), that interacts with the CO 2 . Since the presence of Mn–Mn and light is required for CO production, [Mn(bpy)(CO) 3 ˙] is proposed to be a photochemical reagent for the transformation of CO 2 to CO.more » « less
-
null (Ed.)4,5-diazafluorene (daf) and 9,9’-dimethyl-4,5-diazafluorene (Me2daf) are structurally similar to the important ligand 2,2’-bipyridine (bpy), but significantly less is known about the redox and spectroscopic properties of metal complexes containing Me2daf as a ligand than those containing bpy. New complexes Mn(CO)3Br(daf) (2), Mn(CO)3Br(Me2daf) (3), and [Ru(Me2daf)3](PF6)2 (5) have been prepared and fully characterized to understand the influence of the Me2daf framework on their chemical and electrochemical properties. Structural data for 2, 3, and 5 from single-crystal X-ray diffraction analysis reveal a distinctive widening of the daf and Me2daf chelate angles in comparison to the analogous Mn(CO)3(bpy)Br (1) and [Ru(bpy)3]2+ (4) complexes. Electronic absorption data for these complexes confirm the electronic similarity of daf, Me2daf, and bpy, as spectra are dominated in each case by metal-to-ligand charge transfer bands in the visible region. However, the electrochemical properties of 2, 3, and 5 reveal that the redox-active Me2daf framework in 3 and 5 undergoes reduction at a slightly more negative potential than that of bpy in 1 and 4. Taken together, the results indicate that Me2daf could be useful for preparation of a variety of new redox-active compounds, as it retains the useful redox-active nature of bpy but lacks the acidic, benzylic C–H bonds that can induce secondary reactivity in complexes bearing daf.more » « less
-
Molecular Ag(II) complexes are superoxidizing photoredox catalysts capable of generating radicals from redox-reticent substrates. In this work, we exploited the electrophilicity of Ag(II) centers in [Ag(bpy)2(TFA)][OTf] and Ag(bpy)(TFA)2(bpy, 2,2′-bipyridine; OTf, CF3SO3–) complexes to activate trifluoroacetate (TFA) by visible light–induced homolysis. The resulting trifluoromethyl radicals may react with a variety of arenes to forge C(sp2)–CF3bonds. This methodology is general and extends to other perfluoroalkyl carboxylates of higher chain length (RFCO2–; RF, CF2CF3or CF2CF2CF3). The photoredox reaction may be rendered electrophotocatalytic by regenerating the Ag(II) complexes electrochemically during irradiation. Electrophotocatalytic perfluoroalkylation of arenes at turnover numbers exceeding 20 was accomplished by photoexciting the Ag(II)–TFA ligand-to-metal charge transfer (LMCT) state, followed by electrochemical reoxidation of the Ag(I) photoproduct back to the Ag(II) photoreactant.more » « less
-
[Mn(bpy)(CO) 3 Br] is recognized as a benchmark electrocatalyst for CO 2 reduction to CO, with the doubly reduced [Mn(bpy)(CO) 3 ] − proposed to be the active species in the catalytic mechanism. The reaction of this intermediate with CO 2 and two protons is expected to produce the tetracarbonyl cation, [Mn(bpy)(CO) 4 ] + , thereby closing the catalytic cycle. However, this species has not been experimentally observed. In this study, [Mn(bpy)(CO) 4 ][SbF 6 ] ( 1 ) was directly synthesized and found to be an efficient electrocatalyst for the reduction of CO 2 to CO in the presence of H 2 O. Complex 1 was characterized using X-ray crystallography as well as IR and UV-Vis spectroscopy. The redox activity of 1 was determined using cyclic voltammetry and compared with that of benchmark manganese complexes, e.g. , [Mn(bpy)(CO) 3 Br] ( 2 ) and [Mn(bpy)(CO) 3 (MeCN)][PF 6 ] ( 3 ). Infrared spectroscopic analyses indicated that CO dissociation occurs after a single-electron reduction of complex 1 , producing a [Mn(bpy)(CO) 3 (MeCN)] + species. Complex 1 was experimentally verified as both a precatalyst and an on-cycle intermediate in homogeneous Mn-based electrocatalytic CO 2 reduction.more » « less
An official website of the United States government

