skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Student knowledge gains in polar literacy and statistics after completing guided inquiry modules in an undergraduate statistics course
Climate change is a major concern to undergraduate students. Understanding climate change relies on an understanding of polar regions. However, courses on polar regions are rare at undergraduate institutions. Polar ENgagement through GUided INquiry (PENGUIN) modules were designed to give students experience with polar research in a variety of standard courses, including physics, computer science, physical chemistry, and economics, through using course-specific and computational tools to analyze polar data. Here, we present a new PENGUIN module taught in a statistics class, in which students apply statistical tools to ice core data to reconstruct past temperature records. Quantitative student responses on pre- and post-surveys were collected in a quasi-experimental context to assess student knowledge gains for a test group of 91 students and a control group of 73 students (who did not complete the module). Test-group students made statistically significant increases of 25 to 46% on all six statistics questions, with a normalized gain of 56%. By contrast, control group statistics knowledge gains ranged from −4 to 25%, with statistically significant increases for only three questions and a normalized gain of 22%. For polar research questions, the test group demonstrated increases in correct responses to polar research questions (11 to 31%), with statistically significant improvements (p < .05) of 22-31% on 3 of 6 polar research questions. These findings support the conclusion that PENGUIN modules can successfully teach course concepts while increasing polar literacy.  more » « less
Award ID(s):
2021429 2137083
PAR ID:
10581528
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
Journal of Geoscience Education
Date Published:
Journal Name:
Journal of Geoscience Education
ISSN:
1089-9995
Page Range / eLocation ID:
1 to 14
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Engineering graduates need a deep understanding of key concepts in addition to technical skills to be successful in the workforce. However, traditional methods of instruction (e.g., lecture) do not foster deep conceptual understanding and make it challenging for students to learn the technical skills, (e.g., professional modeling software), that they need to know. This study builds on prior work to assess engineering students’ conceptual and procedural knowledge. The results provide an insight into how the use of authentic online learning modules influence engineering students’ conceptual knowledge and procedural skills. We designed online active learning modules to support and deepen undergraduate students’ understanding of key concepts in hydrology and water resources engineering (e.g., watershed delineation, rainfall-runoff processes, design storms), as well as their technical skills (e.g., obtaining and interpreting relevant information for a watershed, proficiency using HEC-HMS and HEC-RAS modeling tools). These modules integrated instructional content, real data, and modeling resources to support students’ solving of complex, authentic problems. The purpose of our study was to examine changes in students’ self-reported understanding of concepts and skills after completing these modules. The participants in this study were 32 undergraduate students at a southern U.S. university in a civil engineering senior design course who were assigned four of these active learning modules over the course of one semester to be completed outside of class time. Participants completed the Student Assessment of Learning Gains (SALG) survey immediately before starting the first module (time 1) and after completing the last module (time 2). The SALG is a modifiable survey meant to be specific to the learning tasks that are the focus of instruction. We created versions of the SALG for each module, which asked students to self-report their understanding of concepts and ability to implement skills that are the focus of each module. We calculated learning gains by examining differences in students’ self-reported understanding of concepts and skills from time 1 to time 2. Responses were analyzed using eight paired samples t-tests (two for each module used, concepts and skills). The analyses suggested that students reported gains in both conceptual knowledge and procedural skills. The data also indicated that the students’ self-reported gain in skills was greater than their gain in concepts. This study provides support for enhancing student learning in undergraduate hydrology and water resources engineering courses by connecting conceptual knowledge and procedural skills to complex, real-world problems. 
    more » « less
  2. null (Ed.)
    Engineering graduates need a deep understanding of key concepts in addition to technical skills to be successful in the workforce. However, traditional methods of instruction (e.g., lecture) do not foster deep conceptual understanding and make it challenging for students to learn the technical skills, (e.g., professional modeling software), that they need to know. This study builds on prior work to assess engineering students’ conceptual and procedural knowledge. The results provide an insight into how the use of authentic online learning modules influence engineering students’ conceptual knowledge and procedural skills. We designed online active learning modules to support and deepen undergraduate students’ understanding of key concepts in hydrology and water resources engineering (e.g., watershed delineation, rainfall-runoff processes, design storms), as well as their technical skills (e.g., obtaining and interpreting relevant information for a watershed, proficiency using HEC-HMS and HEC-RAS modeling tools). These modules integrated instructional content, real data, and modeling resources to support students’ solving of complex, authentic problems. The purpose of our study was to examine changes in students’ self-reported understanding of concepts and skills after completing these modules. The participants in this study were 32 undergraduate students at a southern U.S. university in a civil engineering senior design course who were assigned four of these active learning modules over the course of one semester to be completed outside of class time. Participants completed the Student Assessment of Learning Gains (SALG) survey immediately before starting the first module (time 1) and after completing the last module (time 2). The SALG is a modifiable survey meant to be specific to the learning tasks that are the focus of instruction. We created versions of the SALG for each module, which asked students to self-report their understanding of concepts and ability to implement skills that are the focus of each module. We calculated learning gains by examining differences in students’ self-reported understanding of concepts and skills from time 1 to time 2. Responses were analyzed using eight paired samples t-tests (two for each module used, concepts and skills). The analyses suggested that students reported gains in both conceptual knowledge and procedural skills. The data also indicated that the students’ self-reported gain in skills was greater than their gain in concepts. This study provides support for enhancing student learning in undergraduate hydrology and water resources engineering courses by connecting conceptual knowledge and procedural skills to complex, real-world problems. 
    more » « less
  3. Scherschel, H.; Rudmann, D.S. (Ed.)
    The COVID-19 pandemic has gifted us a pivot point, an opportunity, in which we can consider ways to do things differently than we have "always" done them. Traditionally, students view statistics as an obstacle to overcome, rather than an opportunity to pursue their own interests and passions. The Passion-Driven Statistics curriculum challenges this viewpoint by exposing students to a meaningful and powerful data analysis experience during a 3-day "boot camp" or as a short project over a few weeks. This provides major student outcomes (e.g., an empirical poster presentation) with minor faculty investment (e.g., time, technology). Our model can be quickly personalized to meet the needs of you and your students, which is especially important during moments of an unexpected pivot. In addition to face-to-face, the outcomes can be met in a fully online, remote, or hybrid environment, making this model suitable for use in a variety of contexts. The "boot camp" model could serve as a way for your student lab members to gain research experience, skill-building workshop for your psychology club students, or project for a content-based course. This NSF-funded (DUE #1820766) model is a multidisciplinary, project-based curriculum that supports students in conducting original research, asking original questions, and communicating methods and results using the language of statistics. The course attracts higher rates of under-represented minority (URM) students compared to a traditional math statistics course (Dierker et al., 2015) and higher rates of female and URM students compared to an introductory programming course (Cooper & Dierker, 2017). Students reported the course more rewarding, were more likely to accomplish more than expected, found the course more useful than other courses, increased confidence in working with data, increased interest in pursuing advanced statistics courses, and received more individualized support than other courses (Dierker et al., 2018). 
    more » « less
  4. null (Ed.)
    To evaluate the impact of a multidisciplinary, project-based course in introductory statistics, this exploratory study examined learning experiences, feelings of confidence, and interest in future experiences with data for undergraduate students in Ghana, West Africa. Students completed a one-semester, introductory statistics course utilizing the Passion-Driven Statistics curriculum. Results showed more than half of the students put more effort into the course and found the material more challenging compared to other courses, while nearly three-quarters reported interest in one or more follow-up courses. Importantly, students also reported increased confidence in a variety of applied statistical skills. These findings demonstrate the positive impact of a multidisciplinary, project-based curriculum on undergraduate students in Ghana, West Africa and demonstrate the potential for its global portability. 
    more » « less
  5. Abstract Course‐based undergraduate research experiences (CUREs) can provide undergraduate students access to research opportunities when student and faculty resources are limited. In addition to expanding research opportunities, CUREs may also be explored as a pedagogical tool for improving student learning of course content and laboratory skills, as well as improving meta‐cognitive features such as confidence. We examined how a 6‐week CURE in an upper‐level undergraduate biochemistry lab affected student gains in content knowledge and confidence in scientific abilities, compared to a non‐CURE section of the same course. We find that gains in content knowledge were similar between CURE and non‐CURE sections, indicating the CURE does not negatively impact student learning. The CURE was associated with a statistically significant gain in student confidence, compared to non‐CURE group. These results show that even a relatively short CURE can be effective in improving student confidence at scientific research skills, in addition to expanding access to research. 
    more » « less