skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on May 1, 2026

Title: Elastic Interaction of Pressurized Cavities in Hyperelastic Media: Attraction and Repulsion
Abstract This study computationally investigates the elastic interaction of two pressurized cylindrical cavities in a 2D hyperelastic medium. Unlike linear elasticity, where interactions are exclusively attractive, nonlinear material models (neo-Hookean, Mooney–Rivlin, Arruda–Boyce) exhibit both attraction and repulsion between the cavities. A critical pressure-shear modulus ratio governs the transition, offering a pathway to manipulate cavity configurations through material and loading parameters. At low ratios, the interactions are always attractive, while at high ratios, both attractive and repulsive regimes exist depending on the separation between the cavities. The effect of the strain-stiffening on these interactions is also analyzed. These insights bridge theoretical and applied mechanics, with implications for soft material design and subsurface engineering.  more » « less
Award ID(s):
1757371
PAR ID:
10581579
Author(s) / Creator(s):
;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Journal of Applied Mechanics
Volume:
92
Issue:
5
ISSN:
0021-8936
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Acoustic levitation in air provides a containerless, gravity-free platform for investigating driven many-particle systems with nonconservative interactions and underdamped dynamics. In prior work the interactions among levitated particles were limited to attractive forces from scattered sound and repulsion from hydrodynamic microstreaming. We report on experiments in which contact cohesion provides a third type of interaction. When particle size and separation are both much smaller than the sound wavelength, this interplay of three interactions results in forces that are attractive over several particle diameters, become repulsive at close approach, and are again attractive at contact. In the presence of sound-induced athermal fluctuations that generate particle collisions, the interplay of these three forces enables the formation of particle chains with anisotropic interactions that depend on chain size and shape due to multibody effects. With the control of the kinetic pathways and the strength of the contact cohesion, different patterns can be assembled, from triangular lattices to labyrinthine patterns of chains to lacelike networks of interconnected rings. These results shed light on the multibody character of acoustic interactions and can be utilized to direct the self-assembly of particles. Published by the American Physical Society2025 
    more » « less
  2. Abstract Surface acoustic waves (SAW) and associated devices are ideal for sensing, metrology, and hybrid quantum devices. While the advances demonstrated to date are largely based on electromechanical coupling, a robust and customizable coherent optical coupling would unlock mature and powerful cavity optomechanical control techniques and an efficient optical pathway for long-distance quantum links. Here we demonstrate direct and robust coherent optical coupling to Gaussian surface acoustic wave cavities with small mode volumes and high quality factors (>105measured here) through a Brillouin-like optomechanical interaction. High-frequency SAW cavities designed with curved metallic acoustic reflectors deposited on crystalline substrates are efficiently optically accessed along piezo-active directions, as well as non-piezo-active (electromechanically inaccessible) directions. The precise optical technique uniquely enables controlled analysis of dissipation mechanisms as well as detailed transverse spatial mode spectroscopy. These advantages combined with simple fabrication, large power handling, and strong coupling to quantum systems make SAW optomechanical platforms particularly attractive for sensing, material science, and hybrid quantum systems. 
    more » « less
  3. Frenkel excitons are the primary photoexcitations in organic semiconductors and are ultimately responsible for the optical properties of such materials. They are also predicted to form bound exciton pairs, termed biexcitons, which are consequential intermediates in a wide range of photophysical processes. Generally, we think of bound states as arising from an attractive interaction. However, here, we report on our recent theoretical analysis, predicting the formation of stable biexciton states in a conjugated polymer material arising from both attractive and repulsive interactions. We show that in J-aggregate systems, 2J-biexcitons can arise from repulsive dipolar interactions with energies E 2 J > 2 E J , while in H-aggregates, 2H-biexciton states with energies E 2 H < 2 E H can arise corresponding to attractive dipole exciton/exciton interactions. These predictions are corroborated by using ultrafast double-quantum coherence spectroscopy on a [poly(2,5-bis(3-hexadecylthiophene-2-yl)thieno[3,2-b]thiophene)] material that exhibits both J- and H-like excitonic behavior. 
    more » « less
  4. Kim, Y.; Moon, D.H. (Ed.)
    We investigate extensions of the Hadron Resonance Gas (HRG) Model beyond the ideal case by incorporating both attractive and repulsive interactions into the model. When considering additional states exceeding those measured with high confidence by the Particle Data Group, attractive corrections to the overall pressure in the HRG model are imposed. On the other hand, we also apply excluded-volume corrections, which ensure there is no overlap of baryons by turning on repulsive (anti)baryon-(anti)baryon interactions. We emphasize the complementary nature of these two extensions and identify combinations of conserved charge susceptibilities that allow us to constrain them separately. In particular, we find interesting ratios of susceptibilities that are sensitive to one correction and not the other. This allows us to constrain the excluded volume and particle spectrum effects separately. Analysis of the available lattice results suggests the presence of both the extra states in the baryonstrangeness sector and the repulsive baryonic interaction, with indications that hyperons have a smaller repulsive core than non-strange baryons. We note that these results are interesting for heavy-ion-collision systems at both the LHC and RHIC. 
    more » « less
  5. Closed, lossless optical cavities are characterized by a Hamiltonian that obeys Hermiticity, resulting in strictly real-valued resonance frequencies. By contrast, non-Hermitian wave systems are characterized by Hamiltonians with poles and zeros at complex frequencies, whose control through precise engineering of material loss and gain can lead to exotic scattering phenomena. Notably, excitation signals that oscillate at complex-valued frequencies can mimic the emergence of gain and loss, facilitating access to these non-Hermitian responses without material modifications. These findings have been advancing the fundamental understanding of wave-matter interactions and are enabling breakthroughs in metamaterials, imaging, sensing, and computing. This Review examines theoretical advances and experimental discoveries in this emerging field, demonstrating how tailored time-domain excitations offer new opportunities for wave manipulation and control. 
    more » « less