skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on December 12, 2025

Title: Simple Fluctuations in Simple Glass Formers
Award ID(s):
2154241
PAR ID:
10581765
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
American Chemical Society
Date Published:
Journal Name:
The Journal of Physical Chemistry B
Volume:
128
Issue:
49
ISSN:
1520-6106
Page Range / eLocation ID:
12237 to 12249
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Boosting is a celebrated machine learning approach which is based on the idea of combining weak and moderately inaccurate hypotheses to a strong and accurate one. We study boosting under the assumption that the weak hypotheses belong to a class of bounded capacity. This assumption is inspired by the common convention that weak hypotheses are “rules-of-thumbs” from an “easy-to-learn class”. (Schapire and Freund ’12, Shalev-Shwartz and Ben-David ’14.) Formally, we assume the class of weak hypotheses has a bounded VC dimension. We focus on two main questions: (i) Oracle Complexity: How many weak hypotheses are needed in order to produce an accurate hypothesis? We design a novel boosting algorithm and demonstrate that it circumvents a classical lower bound by Freund and Schapire (’95, ’12). Whereas the lower bound shows that Ω(1/γ2) weak hypotheses with γ-margin are sometimes necessary, our new method requires only Õ(1/γ) weak hypothesis, provided that they belong to a class of bounded VC dimension. Unlike previous boosting algorithms which aggregate the weak hypotheses by majority votes, the new boosting algorithm uses more complex (“deeper”) aggregation rules. We complement this result by showing that complex aggregation rules are in fact necessary to circumvent the aforementioned lower bound. (ii) Expressivity: Which tasks can be learned by boosting weak hypotheses from a bounded VC class? Can complex concepts that are “far away” from the class be learned? Towards answering the first question we identify a combinatorial-geometric parameter which captures the expressivity of base-classes in boosting. As a corollary we provide an affirmative answer to the second question for many well-studied classes, including half-spaces and decision stumps. Along the way, we establish and exploit connections with Discrepancy Theory. 
    more » « less
  2. Woodruff, D (Ed.)
    This paper studies delegation in a model of discrete choice. In the delegation problem, an uninformed principal must consult an informed agent to make a decision. Both the agent and principal have preferences over the decided-upon action which vary based on the state of the world, and which may not be aligned. The principal may commit to a mechanism, which maps reports of the agent to actions. When this mechanism is deterministic, it can take the form of a menu of actions, from which the agent simply chooses upon observing the state. In this case, the principal is said to have delegated the choice of action to the agent. We consider a setting where the decision being delegated is a choice of a utility-maximizing action from a set of several options. We assume the shared portion of the agent's and principal's utilities is drawn from a distribution known to the principal, and that utility misalignment takes the form of a known bias for or against each action. We provide tight approximation analyses for simple threshold policies under three increasingly general sets of assumptions. With independently-distributed utilities, we prove a 3-approximation. When the agent has an outside option the principal cannot rule out, the constant-approximation fails, but we prove a log ρ/ log log ρ-approximation, where ρ is the ratio of the maximum value to the optimal utility. We also give a weaker but tight bound that holds for correlated values, and complement our upper bounds with hardness results. One special case of our model is utility-based assortment optimization, for which our results are new. 
    more » « less
  3. This paper studies delegation in a model of discrete choice. In the delegation problem, an uninformed principal must consult an informed agent to make a decision. Both the agent and principal have preferences over the decided-upon action which vary based on the state of the world, and which may not be aligned. The principal may commit to a mechanism, which maps reports of the agent to actions. When this mechanism is deterministic, it can take the form of a menu of actions, from which the agent simply chooses upon observing the state. In this case, the principal is said to have delegated the choice of action to the agent. We consider a setting where the decision being delegated is a choice of a utility-maximizing action from a set of several options. We assume the shared portion of the agent's and principal's utilities is drawn from a distribution known to the principal, and that utility misalignment takes the form of a known bias for or against each action. We provide tight approximation analyses for simple threshold policies under three increasingly general sets of assumptions. With independently-distributed utilities, we prove a 3-approximation. When the agent has an outside option the principal cannot rule out, the constant-approximation fails, but we prove a log ρ/ log log ρ-approximation, where ρ is the ratio of the maximum value to the optimal utility. We also give a weaker but tight bound that holds for correlated values, and complement our upper bounds with hardness results. One special case of our model is utility-based assortment optimization, for which our results are new. 
    more » « less