Motivated by the observation of even denominator fractional quantum Hall effect in the n= 3 Landau level of monolayer graphene [Kim et al., Nat. Phys. 15, 154 (2019)], we consider a Bardeen-Cooper-Schrieffer variational state for composite fermions and find that the composite-fermion Fermi sea in this Landau level is unstable to an f-wave pairing. Analogous calculation suggests the possibility of a p-wave pairing of composite fermions at half filling in the n= 2 graphene Landau level, whereas no pairing instability is found at half filling in the n= 0 and n= 1 graphene Landau levels. The relevance of these results to experiments is discussed.
more »
« less
This content will become publicly available on March 17, 2026
Detection of fractional quantum Hall states by entropy-sensitive measurements
The thermopower of a clean two-dimensional electron system is directly proportional to the entropy per charge carrier and can probe strongly interacting quantum phases such as fractional quantum Hall liquids. In particular, thermopower is a valuable parameter to probe the quasiparticle statistics that give rise to excess entropy in certain even-denominator fractional quantum Hall states. Here we demonstrate that the magneto-thermopower detection of fractional quantum Hall states is more sensitive than resistivity measurements. We do this in the context of Bernal-stacked bilayer graphene and highlight several even-denominator states at a relatively low magnetic feld. These capabilities of thermopower measurements support the interest in fractional quantum Hall states for fnding quasiparticles with non-Abelian statistics and elevate bilayer graphene as a promising platform for achieving this.
more »
« less
- PAR ID:
- 10581909
- Publisher / Repository:
- Springer Nature, Nature Physics
- Date Published:
- Journal Name:
- Nature Physics
- ISSN:
- 1745-2473
- Subject(s) / Keyword(s):
- Fractional quantum Hall effect, thermopower, 2D materials, bilayer graphene
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The discovery of the fractional quantum Hall state (FQHS) in 1982 ushered a new era of research in many-body condensed matter physics. Among the numerous FQHSs, those observed at even-denominator Landau level filling factors are of particular interest as they may host quasiparticles obeying non-Abelian statistics and be of potential use in topological quantum computing. The even-denominator FQHSs, however, are scarce and have been observed predominantly in low-disorder two-dimensional (2D) systems when an excited electron Landau level is half filled. An example is the well-studied FQHS at filling factor 5/2 which is believed to be a Bardeen-Cooper-Schrieffer-type, paired state of flux-particle composite fermions (CFs). Here, we report the observation of even-denominator FQHSs at 3/10, 3/8, and 3/4 in the lowest Landau level of an ultrahigh-quality GaAs 2D hole system, evinced by deep minima in longitudinal resistance and developing quantized Hall plateaus. Quite remarkably, these states can be interpreted as even-denominator FQHSs of CFs, emerging from pairing of higher-order CFs when a CF Landau level, rather than an electron or a hole Landau level, is half-filled. Our results affirm enhanced interaction between CFs in a hole system with significant Landau level mixing and, more generally, the pairing of CFs as a valid mechanism for even-denominator FQHSs, and suggest the realization of FQHSs with non-Abelian anyons.more » « less
-
Recent experiments on magic-angle twisted bilayer graphene have shown the formation of flat bands, suggesting that electronic correlation effects are likely to dominate in this material. However, a global transport measurement showing distinct signatures of strong correlations—such as local moments arising from the flat bands—is missing. Here we demonstrate the presence of emergent local moments through their impact on entropy extracted from thermopower measurements. In addition to sign changes in the thermopower at the Dirac point and full filling of the flat bands, we observe sign changes near the quarter-filled bands that do not vary with temperature from 5 K to 60 K. This is in contrast to temperature-dependent crossing points seen in our study on twisted bilayer graphene devices with weaker correlations. Furthermore, we find that applying a magnetic field reduces the thermopower, consistent with spin entropy suppression observed in layered oxides under partial spin polarization. Neither the robust crossing points nor the suppression by a magnetic field can be explained solely from the contributions of band fermions; instead, our data suggest a dominant contribution coming from the entropy of the emergent localized moments of a strongly correlated flat band.more » « less
-
Charge distribution offers a unique fingerprint of important properties of electronic systems, including dielectric response, charge ordering, and charge fractionalization. We develop an architecture for charge sensing in two-dimensional electronic systems in a strong magnetic field. We probe local change of the chemical potential in a proximitized detector layer using scanning tunneling microscopy, allowing us to infer the chemical potential and the charge profile in the sample. Our technique has both high energy (<0.3 meV) and spatial (<10 nm) resolution exceeding that of previous studies by an order of magnitude. We apply our technique to study the chemical potential of quantum Hall liquids in monolayer graphene under high magnetic fields and their responses to charge impurities. The chemical potential measurement provides a local probe of the thermodynamic gap of quantum Hall ferromagnets and fractional quantum Hall states. The screening charge profile reveals spatially oscillatory response of the quantum Hall liquids to charge impurities and is consistent with the composite Fermi liquid picture close to the half-filling. Our technique also paves the way to map moiré potentials, probe Wigner crystals, and investigate fractional charges in quantum Hall and Chern insulators.more » « less
-
The quasiparticles (QPs) or quasiholes (QHs) of fractional quantum Hall states have been predicted to obey fractional braid statistics, which refers to the Berry phase (in addition to the usual Aharonov-Bohm phase) associated with an exchange of two QPs or two QHs or, equivalently, to half of the phase associated with a QP or QH going around another. Certain phase slips in interference experiments in the fractional quantum Hall regime have been attributed to fractional braid statistics, where the interference probes the Berry phase associated with a closed path which has segments along the edges of the sample as well as through the bulk (where tunneling occurs). Noting that QPs and QHs with sharply quantized fractional charge and fractional statistics do not exist at the edge of a fractional quantum Hall state due to the absence of a gap there, we provide arguments that the existence of composite fermions at the edge is sufficient for understanding the primary experimental observations; unlike QPs and QHs, composite fermions are known to be well defined in compressible states without a gap. We further propose that transport through a closed tunneling loop contained entirely in the bulk can, in principle, allow measurement of the braid statistics in a way that the braiding object explicitly has a fractionally quantized charge over the entire loop. Optimal parameters for this experimental geometry are determined from quantitative calculations.more » « less
An official website of the United States government
