skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on December 1, 2025

Title: Transitioning from Simulation to Reality: Applying Chatter Detection Models to Real-World Machining Data
Chatter, a self-excited vibration phenomenon, is a critical challenge in high-speed machining operations, affecting tool life, product surface quality, and overall process efficiency. While machine learning models trained on simulated data have shown promise in detecting chatter, their real-world applicability remains uncertain due to discrepancies between simulated and actual machining environments. The primary goal of this study is to bridge the gap between simulation-based machine learning models and real-world applications by developing and validating a Random Forest-based chatter detection system. This research focuses on improving manufacturing efficiency through reliable chatter detection by integrating Operational Modal Analysis (OMA), Receptance Coupling Substructure Analysis (RCSA), and Transfer Learning (TL). The study applies a Random Forest classification model trained on over 140,000 simulated machining datasets, incorporating techniques like Operational Modal Analysis (OMA), Receptance Coupling Substructure Analysis (RCSA), and Transfer Learning (TL) to adapt the model for real-world operational data. The model is validated against 1600 real-world machining datasets, achieving an accuracy of 86.1%, with strong precision and recall scores. The results demonstrate the model’s robustness and potential for practical implementation in industrial settings, highlighting challenges such as sensor noise and variability in machining conditions. This work advances the use of predictive analytics in machining processes, offering a data-driven solution to improve manufacturing efficiency through more reliable chatter detection.  more » « less
Award ID(s):
2133630
PAR ID:
10582208
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
MDPI
Date Published:
Journal Name:
Machines
Volume:
12
Issue:
12
ISSN:
2075-1702
Page Range / eLocation ID:
923
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Increasing complexity, and requirements for the precise creation of parts, necessitate the use of computer numerical control (CNC) manufacturing. This process involves programmed instructions to remove material from a workpiece through operations such as milling, turning, and drilling. This manufacturing technique incorporates various process parameters (e.g., tools, spindle speed, feed rate, cut depth), leading to a highly complex operation. Additionally, interacting phenomena between the workpiece, tools, and environmental conditions further add to complexity which can lead to defects and poor product quality. Two main areas are of focus for an efficient automated system: monitoring and swift quality assessment. Within these areas, the critical aspects ascertaining the quality of a CNC manufacturing operation are: 1) Tool wear: the inherent deterioration of machine components caused by prolonged utilization, 2) Chatter: vibration that occurs during the machining process, and 3) Surface finish: the final product’s surface roughness. Many research domains tend to focus on just one of these areas while neglecting the interconnected influences of all three. Therefore, to capture a more holistic and comprehensive assessment of a manufacturing process, the overall product quality should be considered, as that’s what ultimately counts. The integration of CNC systems with in-situ monitoring devices such as acoustic sensors, high-speed cameras, and thermal cameras is aimed at understanding the underlying physical aspects of the CNC machining process, including tool wear, chatter, and surface roughness. The incorporation of these monitoring devices has allowed the use of artificial intelligence and machine learning (ML) in smart CNC systems with hopes of increasing productivity, minimizing downtime, and ensuring product quality. By capturing the underlying phenomena that occur during the manufacturing process, users hope to understand the interlinking dynamics for zero-defect automated manufacturing. However, even though the use of ML methods has yielded noteworthy results in analyzing in-situ process data for CNC manufacturing, the black-box nature of these models and their tendency to focus predominantly on single-task objectives rather than multi-task scenarios pose challenges. In real-world part creation and manufacturing scenarios, there is often a need to address multiple interconnected tasks simultaneously which demands models that can multitask effectively. Yet, many ML models designed and trained for singular objectives are limited in their applicability and efficiency in more complex multi-faceted environments. Addressing these challenges, we introduce MTaskHD, a novel multi-task framework, that leverages hyperdimensional computing (HDC) to effortlessly fuse data from various channels and process signals while characterizing quality within a multi-task manufacturing operation. Moreover, it yields interpretable outcomes, allowing users to understand the process behind predictions. In a real-world experiment conducted on a hybrid 5-axis CNC Deckel-Maho-Gildemeister, MTaskHD was implemented to forecast the quality of three distinct features: left 25.4 mm counterbore diameter, right 25.4 mm counterbore diameter, and 2.54 mm milled radius. Demonstrating remarkable performance, the model excelled in predicting the quality levels of all three features in its multi-task configuration with an F1-Score of 95.3%, outperforming alternative machine learning approaches, including support vector machines, Naïve Bayes, multi-layer perceptron, convolutional neural network, and time-LeNet. The inherent multi-task capability, robustness, and interpretability of HDC collectively offer a solution for comprehending intricate manufacturing dynamics and operations. 
    more » « less
  2. Obtaining useful insights from machine learning models trained on experimental datasets collected across different groups to improve the sustainability of chemical processes can be challenging due to the small size and heterogeneity of the dataset. Here we show that shallow learning models such as decision trees and random forest algorithms can be an effective tool for guiding experimental research in the sustainable chemistry field. This study trained four different machine learning algorithms (linear regression, decision tree, random forest, and multilayer perceptron) using different sized datasets containing up to 520 unique reaction conditions for the nitrogen reduction reaction (NRR) on heterogeneous electrocatalysts. Using the catalyst properties and experimental conditions as the features, we determined the ability of each model to regress the ammonia production rate and the faradaic efficiency. We observed that the shallow learning decision tree and random forest models had equal or better predictive power compared to the deep learning multilayer perceptron models and the simple linear regression models. Moreover, decision tree and random forest models enable the extraction of feature importance, which is a powerful tool in guiding experimental research. Analysis of the models showed the complex interaction between the applied potential and catalysts on the effective rate for the NRR. We also suggest some underexplored catalysts–electrolyte combinations to experimental researchers looking to improve both the rate and efficiency of the NRR reaction. 
    more » « less
  3. While machine learning models perform well on offline data, assessing their performance in real-world, resource-constrained environments-considering accuracy, prediction time, power consumption, and memory usage-is crucial for practical applications. This research implements a mobile-based Human Activity Recognition solution to classify three postures-sitting, standing, and walking-using smartphone sensors, specifically accelerometer, gyroscope, and magnetometer. Time-domain features extracted from these sensors were used, with Random Forest employed for feature selection. One traditional machine learning model, Logistic Regression, and one deep learning model, Convolutional Neural Network, were trained and deployed via an Android application for real-time evaluation. While the Convolutional Neural Network achieved higher accuracy and better memory efficiency, Logistic Regression demonstrated faster prediction times during real-time use. Both models showed reduced accuracy for standing and walking postures in real-world conditions, emphasizing the challenges of deploying machine learning models in dynamic environments. This study highlights the importance of evaluating machine learning models in real-world settings to ensure reliability and efficiency, particularly in resource-constrained environments. 
    more » « less
  4. Arai, Igor (Ed.)
    This research explores practical applications of Transfer Learning and Spatial Attention mechanisms using pre-trained models from an open-source simulator, CARLA (Car Learning to Act). The study focuses on vehicle tracking using aerial images, utilizing transformers and graph algorithms for keypoint detection. The proposed detector training process optimizes model parameters without heavy reliance on manually set hyperparameters. The loss function considers both class distribution and position localization of ground truth data. The study utilizes a three-stage methodology: pre-trained model selection, fine-tuning with a custom synthetic dataset, and evaluation using real-world aerial datasets. The results demonstrate the effectiveness of our synthetic transformer-based transfer learning technique in enhancing object detection accuracy and localization. When tested with real-world images, our approach achieved an 88% detection, compared to only 30% when using YOLOv8. The findings underscore the advantages of incorporating graph-based loss functions in transfer learning and position-encoding techniques, demonstrating their effectiveness in realistic machine learning applications with unbalanced classes. 
    more » « less
  5. Kohei, Arai (Ed.)
    This research explores practical applications of Transfer Learning and Spatial Attention mechanisms using pre-trained models from an open-source simulator, CARLA (Car Learning to Act). The study focuses on vehicle tracking using aerial images, utilizing transformers and graph algorithms for keypoint detection. The proposed detector training process optimizes model parameters without heavy reliance on manually set hyperparameters. The loss function considers both class distribution and position localization of ground truth data. The study utilizes a three-stage methodology: pre-trained model selection, fine-tuning with a custom synthetic dataset, and evaluation using real-world aerial datasets. The results demonstrate the effectiveness of our synthetic transformer-based transfer learning technique in enhancing object detection accuracy and localization. When tested with real-world images, our approach achieved an 88% detection, compared to only 30% when using YOLOv8. The findings underscore the advantages of incorporating graph-based loss functions in transfer learning and position-encoding techniques, demonstrating their effectiveness in realistic machine learning applications with unbalanced classes. 
    more » « less