skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on March 4, 2026

Title: Numerical semigroups from rational matrices I: power-integral matrices and nilpotent representations
Award ID(s):
2054002
PAR ID:
10582396
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Taylor and Francis
Date Published:
Journal Name:
Communications in Algebra
Volume:
53
Issue:
3
ISSN:
0092-7872
Page Range / eLocation ID:
1127 to 1137
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We exhibit an operator norm bounded, infinite sequence { A n } \{A_n\} of 3 n × 3 n 3n \times 3n complex matrices for which the commutator map X ↦ X A n − A n X X\mapsto XA_n - A_nX is uniformly bounded below as an operator over the space of trace-zero self-adjoint matrices equipped with Hilbert–Schmidt norm. The construction is based on families of quantum expanders. We give several potential applications of these matrices to the study of quantum expanders. We formulate several natural conjectures and provide numerical evidence. 
    more » « less
  2. This work focuses on accelerating the multiplication of a dense random matrix with a (fixed) sparse matrix, which is frequently used in sketching algorithms. We develop a novel scheme that takes advantage of blocking and recomputation (on- the-fly random number generation) to accelerate this operation. The techniques we propose decrease memory movement, thereby increasing the algorithm’s parallel scalability in shared memory architectures. On the Intel Frontera architecture, our algorithm can achieve 2x speedups over libraries such as Eigen and Intel MKL on some examples. In addition, with 32 threads, we can obtain a parallel efficiency of up to approximately 45%. We also present a theoretical analysis for the memory movement lower bound of our algorithm, showing that under mild assumptions, it's possible to beat the data movement lower bound of general matrix-matrix multiply (GEMM) by a factor of sqrt(M), where $$M$$ is the cache size. Finally, we incorporate our sketching method into a randomized algorithm for overdetermined least squares with sparse data matrices. Our results are competitive with SuiteSparse for highly overdetermined problems; in some cases, we obtain a speedup of 10x over SuiteSparse. 
    more » « less