skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Investigating the Ultra-diffuse Galaxy NGC5846_UDG1 through the Kinematics of its Rich Globular Cluster System
ABSTRACT Recent studies of ultra-diffuse galaxies (UDGs) have shown their globular cluster (GC) systems to be central in unveiling their remarkable properties and halo masses. Deep Hubble Space Telescope imaging revealed 54 GC candidates around the UDG NGC5846_UDG1 (UDG1), with a remarkable 13 per cent of the stellar light contained in the GC system. We present a kinematic analysis of UDG1’s GC system from observations with the integral field spectrograph Keck Cosmic Web Imager on the Keck II telescope. We measure recessional velocities for 19 GCs, confirming them as members of UDG1, giving a total of 20 confirmed GCs when combined with literature. Approximately, 9 per cent of the stellar light are contained just in the confirmed GCs. We determine the GC system’s velocity dispersion to be $$\sigma _{\rm GC}$$ = 29.8$$^{+6.4}_{-4.9}$$ km s$$^{-1}$$. We find that $$\sigma _{\rm GC}$$ increases with increasing magnitude, consistent with predictions for a GC system that evolved under the influence of dynamical friction. The GC system velocity dispersion is constant out to $${\sim} 1R_{\rm eff}$$. Using $$\sigma _{\rm GC}$$, we calculate $$M_{\rm dyn}$$ = $$2.09^{+1.00}_{-0.64}\times 10^{9}$$ M$$_{\odot }$$ as the dynamical mass enclosed within $$\sim$$2.5 kpc. The dark matter halo mass suggested by the GC number–halo mass relationship agrees with our dynamical mass estimate, implying a halo more massive than suggested by common stellar mass–halo mass relationships. UDG1, being GC-rich with a massive halo, fits the picture of a failed galaxy.  more » « less
Award ID(s):
2308390
PAR ID:
10582407
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
539
Issue:
2
ISSN:
0035-8711
Format(s):
Medium: X Size: p. 674-689
Size(s):
p. 674-689
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    ABSTRACT Globular clusters (GCs) are often used to estimate the dark matter content of galaxies, especially dwarf galaxies, where other kinematic tracers are lacking. These estimates typically assume spherical symmetry and dynamical equilibrium, assumptions that may not hold for the sparse GC population of dwarfs in galaxy clusters. We use a catalogue of GCs tagged on to the Illustris simulation to study the accuracy of GC-based mass estimates. We focus on galaxies in the stellar mass range 108–1011.8 M⊙ identified in nine simulated Virgo-like clusters. Our results indicate that mass estimates are, on average, accurate in systems with GC numbers NGC ≥ 10 and where the uncertainty of individual GC line-of-sight velocities is smaller than the inferred velocity dispersion, σGC. In cases where NGC ≤ 10, however, biases may result, depending on how σGC is computed. We provide calibrations that may help alleviate these biases in methods widely used in the literature. As an application, we find a number of dwarfs with $$M_{*} \sim 10^{8.5}\, \mathrm{M}_{\odot }$$ – comparable with the ultra-diffuse galaxy NGC 1052-DF2 (DF2), notable for the low σGC of its 10 GCs – that have $$\sigma _{\rm GC} \sim 7\!-\!15\, {\rm km \,s}^{-1}$$. These DF2 analogues correspond to relatively massive systems at their infall time (M200 ∼ 1–3 × 1011 M⊙), which have retained only 3–17 GCs and have been stripped of more than 95 per cent of their dark matter. Our results suggest that extreme tidal mass loss in otherwise normal dwarf galaxies may be a possible formation channel for ultra-diffuse objects such as DF2. 
    more » « less
  2. ABSTRACT The contribution of dissolved globular clusters (GCs) to the stellar content of the Galactic halo is a key constraint on models for GC formation and destruction, and the mass assembly history of the Milky Way. Earlier results from APOGEE pointed to a large contribution of destroyed GCs to the stellar content of the inner halo, by as much as 25 $${{\ \rm per\ cent}}$$, which is an order of magnitude larger than previous estimates for more distant regions of the halo. We set out to measure the ratio between nitrogen-rich (N-rich) and normal halo field stars, as a function of distance, by performing density modelling of halo field populations in APOGEE DR16. Our results show that at 1.5 kpc from the Galactic Centre, N-rich stars contribute a much higher 16.8$$^{+10.0}_{-7.0}\, {{\ \rm per\ cent}}$$ fraction to the total stellar halo mass budget than the 2.7$$^{+1.0}_{-0.8}\, {{\ \rm per\ cent}}$$ ratio contributed at 10 kpc. Under the assumption that N-rich stars are former GC members that now reside in the stellar halo field, and assuming the ratio between first and second population GC stars being 1:2, we estimate a total contribution from disrupted GC stars of the order of 27.5$$^{+15.4}_{-11.5}\, {{\ \rm per\ cent}}$$ at r = 1.5 kpc and 4.2$$^{+1.5}_{-1.3}\, {{\ \rm per\ cent}}$$ at r = 10 kpc. Furthermore, since our methodology requires fitting a density model to the stellar halo, we integrate such density within a spherical shell from 1.5 to 15 kpc in radius, and find a total stellar mass arising from dissolved and/or evaporated GCs of MGC,total = 9.6$$^{+4.0}_{-2.6}\, \times$$ 107 M⊙. 
    more » « less
  3. We present spatially resolved Keck Cosmic Web Imager stellar spectroscopy of the Virgo cluster dwarf galaxies VCC 9 and VCC 1448. These galaxies have similar stellar masses and large half-light radii but very different globular cluster (GC) system richness (∼25 versus ∼99 GCs). Using the KCWI data, we spectroscopically confirm 10 GCs associated with VCC 1448 and one GC associated with VCC 9. We make two measurements of dynamical mass for VCC 1448 based on the stellar and GC velocities, respectively. VCC 1448’s mass measurements suggest that it resides in a halo in better agreement with the expectation of the stellar mass–halo mass relationship than the expectation from its large GC counts. For VCC 9, the dynamical mass we measure agrees with the expected halo mass from both relationships. We compare VCC 1448 and VCC 9 to the GC-rich galaxy Dragonfly 44 (∼74 GCs), which is similar in size but has ∼1 dex less stellar mass than either Virgo galaxy. In dynamical mass – GC number space, Dragonfly 44 and VCC 1448 exhibit richer GC systems given their dynamical mass than that of VCC 9 and other ‘normal’ galaxies. We also place the galaxies in kinematics–ellipticity space finding evidence of an anticorrelation between rotational support and the fraction of a galaxy’s stellar mass in its GC system, that is, VCC 9 is more rotationally supported than VCC 1448, which is more rotationally supported than Dragonfly 44. This trend may be expected if a galaxy’s GC content depends on its natal gas properties at formation. 
    more » « less
  4. ABSTRACT The velocity dispersion of globular clusters (GCs) around ultra-diffuse galaxies (UDGs) in the Virgo cluster spans a wide range, including cases where GC kinematics suggest haloes as massive as (or even more massive than) that of the Milky Way around these faint dwarfs. We analyse the catalogues of GCs derived in post-processing from the TNG50 cosmological simulation to study the GC system kinematics and abundance of simulated UDGs in galaxy groups and clusters. UDGs in this simulation reside exclusively in dwarf-mass haloes with M200 ≲ 1011.2 M⊙. When considering only GCs gravitationally bound to simulated UDGs, we find GCs properties that overlap well with several observational measurements for UDGs. In particular, no bias towards overly massive haloes is inferred from the study of bound GCs, confirming that GCs are good tracers of UDG halo mass. However, we find that contamination by intracluster GCs may, in some cases, substantially increase velocity dispersion estimates when performing projected mock observations of our sample. We caution that targets with less than 10 GC tracers are particularly prone to severe uncertainties. Measuring the stellar kinematics of the host galaxy should help confirm the unusually massive haloes suggested by GC kinematics around some UDGs. 
    more » « less
  5. ABSTRACT Some ultra diffuse galaxies (UDGs) reveal many more globular clusters (GCs) than classical dwarf galaxies of the same stellar mass. These UDGs, with a mass in their GC system ($$M_{\rm GC}$$) approaching 10 per cent of their host galaxy stellar mass ($$M_{\ast }$$), are also inferred to have high halo mass to stellar mass ratios ($$M_{\rm halo}/M_{\ast }$$). They have been dubbed Failed Galaxies. It is unknown what role high GC formation efficiencies and/or low destruction rates play in determining the high $$M_{\rm GC}/M_{\ast }$$ ratios of some UDGs. Here we present a simple model, which is informed by recent JWST observations of lensed galaxies and by a simulation in the literature of GC mass loss and tidal disruption in dwarf galaxies. With this simple model, we aim to constrain the effects of GC efficiency/destruction on the observed GC richness of UDGs and their variation with the integrated stellar populations of UDGs. We assume no ongoing star formation (i.e. quenching at early times) and that the disrupted GCs contribute their stars to those of the host galaxy. We find that UDGs, with high $$M_{\rm GC}/M_{\ast }$$ ratios today, are most likely the result of very high GC formation efficiencies combined with modest rates of GC destruction. The current data loosely follow the model that ranges from the mean stellar population of classical dwarfs to that of metal-poor GCs as $$M_{\rm GC}/M_{\ast }$$ increases. As more data becomes available for UDGs, our simple model can be refined and tested further. 
    more » « less