skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Improving Charge Transport and Environmental Stability of Carbohydrate‐Bearing Semiconducting Polymers in Organic Field‐Effect Transistors
Abstract Semiconducting polymers offer synthetic tunability, good mechanical properties, and biocompatibility, enabling the development of soft technologies previously inaccessible. Side‐chain engineering is a versatile approach for optimizing these semiconducting materials, but minor modifications can significantly impact material properties and device performance. Carbohydrate side chains have been previously introduced to improve the solubility of semiconducting polymers in greener solvents. Despite this achievement, these materials exhibit suboptimal performance and stability in field‐effect transistors. In this work, structure–property relationships are explored to enhance the device performance of carbohydrate‐bearing semiconducting polymers. Toward this objective, a series of isoindigo‐based polymers with carbohydrate side chains of varied carbon‐spacer lengths is developed. Material and device characterizations reveal the effects of side chain composition on solid‐state packing and device performance. With this new design, charge mobility is improved by up to three orders of magnitude compared to the previous studies. Processing–property relationships are also established by modulating annealing conditions and evaluating device stability upon air exposure. Notably, incidental oxygen‐doping effects lead to increased charge mobility after 10 days of exposure to ambient air, correlated with decreased contact resistance. Bias stress stability is also evaluated. This work highlights the importance of understanding structure–property relationships toward the optimization of device performance.  more » « less
Award ID(s):
2047689
PAR ID:
10582546
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Wiely publishing
Date Published:
Journal Name:
Advanced Electronic Materials
ISSN:
2199-160X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The optoelectronic properties of semiconducting polymers and device performance rely on a delicate interplay of design and processing conditions. However, screening and optimizing the relationships between these parameters for reliably fabricating organic electronics can be an arduous task requiring significant time and resources. To overcome this challenge, Polybot is developed—a robotic platform within a self‐driving lab that can efficiently produce organic field‐effect transistors (OFETs) from various semiconducting polymers via high‐throughput blade coating deposition. Polybot not only handles the fabrication process but also can conduct characterization tests on the devices and autonomously analyze the data gathered, thus facilitating the rapid acquisition of data on a large scale. This work leverages the capabilities of this platform to investigate the fabrication of OFETs using hydrogen bonding‐containing semiconducting polymers. Through high‐throughput fabrication and characterization, various data trends are analyzed, and large extents of anisotropic charge mobility are observed in devices. The materials are thoroughly characterized to understand the role of processing conditions in solid state and electronic properties of these organic semiconductors. The findings demonstrate the effectiveness of automated fabrication and characterization platforms in uncovering novel structure–property relationships, facilitating refinement of rational chemical design, and processing conditions, ultimately leading to new semiconducting materials. 
    more » « less
  2. null (Ed.)
    Incorporation of polar side chains on organic semiconducting materials have been used recently in thermoelectric materials to increase dopant:semiconductor miscibility and stability to further increase the performance and durability of devices. However, investigations into how polar side chains can affect the structure and energetics of polythiophenes compared to non-polar alkyl side chains are usually carried out using materials with no common morphological structure. Within this work we systematically investigate the increase in polar side chain content on poly(3-hexylthiophene) (P3HT) and how the optical, electrochemical, and structural properties are affected. We find a decreasing degree of aggregation with increasing polar side chain content leading to lower charge carrier mobilities. Upon doping with 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ), we find that the electrical conductivity is reduced when incorporating the polar side chain and no stabilising effect is demonstrated when annealing the doped thin films at raised temperatures. This study emphasises that polar functionalities do not always increase dopant:semiconductor interactions and can harm desirable structural and electrical characteristics, and therefore should be incorporated into organic semiconductors with caution. 
    more » « less
  3. Graft polymers are promising in energy and biomedical applications. However, the diverse architectures make it challenging to establish their structure–property relationships. We systematically investigate how backbone and side-chain architectures influence four key properties: glass transition temperature (Tg), self-diffusion coefficient (D), radius of gyration (Rg), and packing density (ρ). Using molecular dynamics simulations, we analyze a dataset of 500 graft polymers with randomly positioned side chains. Tg and D exhibit decoupled relationships due to the distinct topological effects. Furthermore, we develop dense neural networks (DNNs) and convolutional neural networks (CNNs) to pave the way to polymer design with desired properties. 
    more » « less
  4. null (Ed.)
    Mechanically interlocked polymers (MIPs), polymer architectures that incorporate the mechanical bond, have seen a dramatic growth in interest over the last decade or so. Of particular interest in these architectures are the high mobility and conformational freedom of the interlocked components, which can give rise to unique property profiles. Over the years the research advances, from the chemistry, physics, material science and engineering fields, has started to build an understanding of how incorporating mechanical bonds into a polymer structure impacts its properties. This review focuses on summarizing the state-of-the-art understanding of the structure-property relationships in these materials and an outlook toward their applications, specifically focusing on four main classes of MIPs, polyrotaxanes, slide-ring gels, daisy-chain polymers and polycatenanes. 
    more » « less
  5. Abstract The field of organic electronics has profited from the discovery of new conjugated semiconducting polymers that have molecular backbones which exhibit resilience to conformational fluctuations, accompanied by charge carrier mobilities that routinely cross the 1 cm 2 /Vs benchmark. One such polymer is indacenodithiophene-co-benzothiadiazole. Previously understood to be lacking in microstructural order, we show here direct evidence of nanosized domains of high order in its thin films. We also demonstrate that its device-based high-performance electrical and thermoelectric properties are not intrinsic but undergo rapid stabilization following a burst of ambient air exposure. The polymer’s nanomechanical properties equilibrate on longer timescales owing to an orthogonal mechanism; the gradual sweating-out of residual low molecular weight solvent molecules from its surface. We snapshot the quasistatic temporal evolution of the electrical, thermoelectric and nanomechanical properties of this prototypical organic semiconductor and investigate the subtleties which play on competing timescales. Our study documents the untold and often overlooked story of a polymer device’s dynamic evolution toward stability. 
    more » « less