Knowledge of molecular crystal sublimation equilibrium data is vital in many industrial processes, but this data can be difficult to measure experimentally for low-volatility species. Theoretical prediction of sublimation pressures could provide a useful supplement to experiment, but the exponential temperature dependence of sublimation (or any saturated vapor) pressure curve makes this challenging. An uncertainty of only a few percent in the sublimation enthalpy or entropy can propagate to an error in the sublimation pressure exceeding several orders of magnitude for a given temperature interval. Despite this fundamental difficulty, this paper performs some of the first ab initio predictions of sublimation pressure curves. Four simple molecular crystals (ethane, methanol, benzene, and imidazole) have been selected for a case study showing the currently achievable accuracy of quantum chemistry calculations. Fragment-based ab initio techniques and the quasi-harmonic approximation are used for calculations of cohesive and phonon properties of the crystals, while the vapor phase is treated by the ideal gas model. Ab initio sublimation pressure curves for model compounds are compared against their experimental counterparts. The computational uncertainties are estimated, weak points of the computational methodology are identified, and further improvements are proposed.
more »
« less
Ab Initio Calculation of Fluid Properties for Precision Metrology
Recent advances regarding the interplay between ab initio calculations and metrology are reviewed, with particular emphasis on gas-based techniques used for temperature and pressure measurements. Since roughly 2010, several thermophysical quantities – in particular, virial and transport coefficients – can be computed from first principles without uncontrolled approximations and with rigorously propagated uncertainties. In the case of helium, computational results have accuracies that exceed the best experimental data by at least one order of magnitude and are suitable to be used in primary metrology. The availability of ab initio virial and transport coefficients contributed to the recent SI definition of temperature by facilitating measurements of the Boltzmann constant with unprecedented accuracy. Presently, they enable the development of primary standards of thermodynamic temperature in the range 2.5–552 K and pressure up to 7 MPa using acoustic gas thermometry, dielectric constant gas thermometry, and refractive index gas thermometry. These approaches will be reviewed, highlighting the effect of first-principles data on their accuracy. The recent advances in electronic structure calculations that enabled highly accurate solutions for the many-body interaction potentials and polarizabilities of atoms – particularly helium – will be described, together with the subsequent computational methods, most often based on quantum statistical mechanics and its path-integral formulation, that provide thermophysical properties and their uncertainties. Similar approaches for molecular systems, and their applications, are briefly discussed. Current limitations and expected future lines of research are assessed.
more »
« less
- Award ID(s):
- 2154908
- PAR ID:
- 10582609
- Publisher / Repository:
- American Institute of Physics
- Date Published:
- Journal Name:
- Journal of Physical and Chemical Reference Data
- Volume:
- 52
- Issue:
- 3
- ISSN:
- 0047-2689
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract First-principles techniques for electronic transport property prediction have seen rapid progress in recent years. However, it remains a challenge to predict properties of heterostructures incorporating fabrication-dependent variability. Machine-learning (ML) approaches are increasingly being used to accelerate design and discovery of new materials with targeted properties, and extend the applicability of first-principles techniques to larger systems. However, few studies exploited ML techniques to characterize relationships between local atomic structures and global electronic transport coefficients. In this work, we propose an electronic-transport-informatics (ETI) framework that trains on ab initio models of small systems and predicts thermopower of fabricated silicon/germanium heterostructures, matching measured data. We demonstrate application of ML approaches to extract important physics that determines electronic transport in semiconductor heterostructures, and bridge the gap between ab initio accessible models and fabricated systems. We anticipate that ETI framework would have broad applicability to diverse materials classes.more » « less
-
The potential energy curves (PECs) for the homonuclear He–He, Ar–Ar, Cu–Cu, and Si–Si dimers, as well as heteronuclear Cu–He, Cu–Ar, Cu–Xe, Si–He, Si–Ar, and Si–Xe dimers, are obtained in quantum Monte Carlo (QMC) calculations. It is shown that the QMC method provides the PECs with an accuracy comparable with that of the state-of-the-art coupled cluster singles and doubles with perturbative triples corrections [CCSD(T)] calculations. The QMC data are approximated by the Morse long range (MLR) and (12-6) Lennard-Jones (LJ) potentials. The MLR and LJ potentials are used to calculate the deflection angles in binary collisions of corresponding atom pairs and transport coefficients of Cu and Si vapors and their mixtures with He, Ar, and Xe gases in the range of temperature from 100 K to 10 000 K. It is shown that the use of the LJ potentials introduces significant errors in the transport coefficients of high-temperature vapors and gas mixtures. The mixtures with heavy noble gases demonstrate anomalous behavior when the viscosity and thermal conductivity can be larger than that of the corresponding pure substances. In the mixtures with helium, the thermal diffusion factor is found to be unusually large. The calculated viscosity and diffusivity are used to determine parameters of the variable hard sphere and variable soft sphere molecular models as well as parameters of the power-law approximations for the transport coefficients. The results obtained in the present work include all information required for kinetic or continuum simulations of dilute Cu and Si vapors and their mixtures with He, Ar, and Xe gases.more » « less
-
The hydrated electron is of interest to both theorists and experimentalists as a paradigm solution-phase quantum system. Although the bulk of the theoretical work studying the hydrated electron is based on mixed quantum/classical (MQC) methods, recent advances in computer power have allowed several attempts to study this object using ab initio methods. The difficulty with employing ab initio methods for this system is that even with relatively inexpensive quantum chemistry methods such as density functional theory (DFT), such calculations are still limited to at most a few tens of water molecules and only a few picoseconds duration, leaving open the question as to whether the calculations are converged with respect to either system size or dynamical fluctuations. Moreover, the ab initio simulations of the hydrated electron that have been published to date have provided only limited analysis. Most works calculate the electron’s vertical detachment energy, which can be compared to experiment, and occasionally the electronic absorption spectrum is also computed. Structural features, such as pair distribution functions, are rare in the literature, with the majority of the structural analysis being simple statements that the electron resides in a cavity, which are often based only on a small number of simulation snapshots. Importantly, there has been no ab initio work examining the temperature-dependent behavior of the hydrated electron, which has not been satisfactorily explained by MQC simulations. In this work, we attempt to remedy this situation by running DFT-based ab initio simulations of the hydrated electron as a function of both box size and temperature. We show that the calculated properties of the hydrated electron are not converged even with simulation sizes up to 128 water molecules and durations of several tens of picoseconds. The simulations show significant changes in the water coordination and solvation structure with box size. Our temperature-dependent simulations predict a red-shift of the absorption spectrum (computed using TD-DFT with an optimally tuned range-separated hybrid functional) with increasing temperature, but the magnitude of the predicted red-shift is larger than that observed experimentally, and the absolute position of the calculated spectra are off by over half an eV. The spectral red-shift at high temperatures is accompanied by both a partial loss of structure of the electron’s central cavity and an increased radius of gyration that pushes electron density onto and beyond the first solvation shell. Overall, although ab initio simulations can provide some insights into the temperature-dependent behavior of the hydrated electron, the simulation sizes and level of quantum chemistry theory that are currently accessible are inadequate for correctly describing the experimental properties of this fascinating object.more » « less
-
Abstract Recent studies of the optical properties of 2D materials have reported unique phenomena and features that are absent in conventional bulk semiconductors. Many of these interesting properties, such as enhanced light‐matter coupling, gate‐tunable photoluminescence, and unusual excitonic optical selection rules arise from the nature of the two‐ and multi‐particle excited states such as strongly bound Wannier excitons and charged excitons. The theory, modeling, and ab initio calculations of these optically excited states in 2D materials are reviewed. Several analytical and ab initio approaches are introduced. These methods are compared with each other, revealing their relative strength and limitations. Recent works that apply these methods to a variety of 2D materials and material‐defect systems are then highlighted. Understanding of the optically excited states in these systems is relevant not only for fundamental scientific research of electronic excitations and correlations, but also plays an important role in the future development of quantum information science and nano‐photonics.more » « less
An official website of the United States government
