skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on January 24, 2026

Title: The typicality principle and its implications for statistics and data science
A central focus of data science is the transformation of empirical evidence into knowledge. As such, the key insights and scientific attitudes of deep thinkers like Fisher, Popper, and Tukey are expected to inspire exciting new advances in machine learning and artificial intelligence in years to come. Along these lines, the present paper advances a novel {\em typicality principle} which states, roughly, that if the observed data is sufficiently ``atypical'' in a certain sense relative to a posited theory, then that theory is unwarranted. This emphasis on typicality brings familiar but often overlooked background notions like model-checking to the inferential foreground. One instantiation of the typicality principle is in the context of parameter estimation, where we propose a new typicality-based regularization strategy that leans heavily on goodness-of-fit testing. The effectiveness of this new regularization strategy is illustrated in three non-trivial examples where ordinary maximum likelihood estimation fails miserably. We also demonstrate how the typicality principle fits within a bigger picture of reliable and efficient uncertainty quantification.  more » « less
Award ID(s):
2412629
PAR ID:
10582696
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
arXiv.org
Date Published:
Format(s):
Medium: X
Institution:
arXiv.org
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract In this article, we exploit the similarities between Tikhonov regularization and Bayesian hierarchical models to propose a regularization scheme that acts like a distributed Tikhonov regularization where the amount of regularization varies from component to component, and a computationally efficient numerical scheme that is suitable for large-scale problems. In the standard formulation, Tikhonov regularization compensates for the inherent ill-conditioning of linear inverse problems by augmenting the data fidelity term measuring the mismatch between the data and the model output with a scaled penalty functional. The selection of the scaling of the penalty functional is the core problem in Tikhonov regularization. If an estimate of the amount of noise in the data is available, a popular way is to use the Morozov discrepancy principle, stating that the scaling parameter should be chosen so as to guarantee that the norm of the data fitting error is approximately equal to the norm of the noise in the data. A too small value of the regularization parameter would yield a solution that fits to the noise (too weak regularization) while a too large value would lead to an excessive penalization of the solution (too strong regularization). In many applications, it would be preferable to apply distributed regularization, replacing the regularization scalar by a vector valued parameter, so as to allow different regularization for different components of the unknown, or for groups of them. Distributed Tikhonov-inspired regularization is particularly well suited when the data have significantly different sensitivity to different components, or to promote sparsity of the solution. The numerical scheme that we propose, while exploiting the Bayesian interpretation of the inverse problem and identifying the Tikhonov regularization with the maximum a posteriori estimation, requires no statistical tools. A clever combination of numerical linear algebra and numerical optimization tools makes the scheme computationally efficient and suitable for problems where the matrix is not explicitly available. Moreover, in the case of underdetermined problems, passing through the adjoint formulation in data space may lead to substantial reduction in computational complexity. 
    more » « less
  2. In this study, we explore the use of low rank and sparse constraints for the noninvasive estimation of epicardial and endocardial extracellular potentials from body-surface electrocardiographic data to locate the focus of premature ventricular contractions (PVCs). The proposed strategy formulates the dynamic spatiotemporal distribution of cardiac potentials by means of low rank and sparse decomposition, where the low rank term represents the smooth background and the anomalous potentials are extracted in the sparse matrix. Compared to the most previous potential-based approaches, the proposed low rank and sparse constraints are batch spatiotemporal constraints that capture the underlying relationship of dynamic potentials. The resulting optimization problem is solved using alternating direction method of multipliers . Three sets of simulation experiments with eight different ventricular pacing sites demonstrate that the proposed model outperforms the existing Tikhonov regularization (zero-order, second-order) and L1-norm based method at accurately reconstructing the potentials and locating the ventricular pacing sites. Experiments on a total of 39 cases of real PVC data also validate the ability of the proposed method to correctly locate ectopic pacing sites. 
    more » « less
  3. Phase estimation plays a central role in communications, sensing, and information processing. Quantum correlated states, such as squeezed states, enable phase estimation beyond the shot-noise limit, and in principle approach the ultimate quantum limit in precision, when paired with optimal quantum measurements. However, physical realizations of optimal quantum measurements for optical phase estimation with quantum-correlated states are still unknown. Here we address this problem by introducing an adaptive Gaussian measurement strategy for optical phase estimation with squeezed vacuum states that, by construction, approaches the quantum limit in precision. This strategy builds from a comprehensive set of locally optimal POVMs through rotations and homodyne measurements and uses the Adaptive Quantum State Estimation framework for optimizing the adaptive measurement process, which, under certain regularity conditions, guarantees asymptotic optimality for this quantum parameter estimation problem. As a result, the adaptive phase estimation strategy based on locally-optimal homodyne measurements achieves the quantum limit within the phase interval of [ 0 , π / 2 ) . Furthermore, we generalize this strategy by including heterodyne measurements, enabling phase estimation across the full range of phases from [ 0 , π ) , where squeezed vacuum allows for unambiguous phase encoding. Remarkably, for this phase interval, which is the maximum range of phases that can be encoded in squeezed vacuum, this estimation strategy maintains an asymptotic quantum-optimal performance, representing a significant advancement in quantum metrology. 
    more » « less
  4. null (Ed.)
    In distributed second order optimization, a standard strategy is to average many local estimates, each of which is based on a small sketch or batch of the data. However, the local estimates on each machine are typically biased, relative to the full solution on all of the data, and this can limit the effectiveness of averaging. Here, we introduce a new technique for debiasing the local estimates, which leads to both theoretical and empirical improvements in the convergence rate of distributed second order methods. Our technique has two novel components: (1) modifying standard sketching techniques to obtain what we call a surrogate sketch; and (2) carefully scaling the global regularization parameter for local computations. Our surrogate sketches are based on determinantal point processes, a family of distributions for which the bias of an estimate of the inverse Hessian can be computed exactly. Based on this computation, we show that when the objective being minimized is l2-regularized with parameter ! and individual machines are each given a sketch of size m, then to eliminate the bias, local estimates should be computed using a shrunk regularization parameter given by (See PDF), where d(See PDF) is the (See PDF)-effective dimension of the Hessian (or, for quadratic problems, the data matrix). 
    more » « less
  5. null (Ed.)
    Abstract Discrete ill-posed inverse problems arise in various areas of science and engineering. The presence of noise in the data often makes it difficult to compute an accurate approximate solution. To reduce the sensitivity of the computed solution to the noise, one replaces the original problem by a nearby well-posed minimization problem, whose solution is less sensitive to the noise in the data than the solution of the original problem. This replacement is known as regularization. We consider the situation when the minimization problem consists of a fidelity term, that is defined in terms of a p -norm, and a regularization term, that is defined in terms of a q -norm. We allow 0 < p , q ≤ 2. The relative importance of the fidelity and regularization terms is determined by a regularization parameter. This paper develops an automatic strategy for determining the regularization parameter for these minimization problems. The proposed approach is based on a new application of generalized cross validation. Computed examples illustrate the performance of the method proposed. 
    more » « less