skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on September 1, 2025

Title: Deep-ultraviolet Fourier ptychography (DUV-FP) for label-free biochemical imaging via feature-domain optimization
We present deep-ultraviolet Fourier ptychography (DUV-FP) for high-resolution chemical imaging of biological specimens in their native state without exogenous stains. This approach uses a customized 265-nm DUV LED array for angle-varied illumination, leveraging the unique DUV absorption properties of biomolecules at this wavelength region. We implemented a robust feature-domain optimization framework to overcome common challenges in Fourier ptychographic reconstruction, including vignetting, pupil aberrations, stray light problems, intensity variations, and other systematic errors. By using a 0.12 numerical aperture low-resolution objective lens, our DUV-FP prototype can resolve the 345-nm linewidth on a resolution target, demonstrating at least a four-fold resolution gain compared to the captured raw images. Testing on various biospecimens demonstrates that DUV-FP significantly enhances absorption-based chemical contrast and reveals detailed structural and molecular information. To further address the limitations of conventional FP in quantitative phase imaging, we developed a spatially coded DUV-FP system. This platform enables true quantitative phase imaging of biospecimens with DUV light, overcoming the non-uniform phase response inherent in traditional microscopy techniques. The demonstrated advancements in high-resolution, label-free chemical imaging may accelerate developments in digital pathology, potentially enabling rapid, on-site analysis of biopsy samples in clinical settings.  more » « less
Award ID(s):
2012140
PAR ID:
10583008
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
APL Photonics
Date Published:
Journal Name:
APL Photonics
Volume:
9
Issue:
9
ISSN:
2378-0967
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Fourier ptychography (FP) is an enabling imaging technique that produces high‐resolution complex‐valued images with extended field coverages. However, when FP images a phase object with any specific spatial frequency, the captured images contain only constant values, rendering the recovery of the corresponding linear phase ramp impossible. This challenge is not unique to FP but also affects other common microscopy techniques — a rather counterintuitive outcome given their widespread use in phase imaging. The underlying issue originates from the non‐uniform phase transfer characteristic inherent in microscope systems, which impedes the conversion of object wavefields into discernible intensity variations. To address this challenge, spatially‐coded Fourier ptychography (scFP) is presented for true quantitative phase imaging. In scFP, a flexible and detachable coded thin film is attached atop the image sensor in a regular FP setup. The spatial modulation of this thin film ensures a uniform phase response across the entire synthetic bandwidth. It improves reconstruction quality, corrects refractive index underestimation issues prevalent in conventional FP, and adds a new dimension of measurement diversity in spatial domain. The development of scFP is expected to catalyze new research directions and applications for phase imaging, emphasizing the need for true quantitative accuracy with uniform frequency response. 
    more » « less
  2. We report the implementation of a fully on-chip, lensless microscopy technique termed optofluidic ptychography. This imaging modality complements the miniaturization provided by microfluidics and allows the integration of ptychographic microscopy into various lab-on-a-chip devices. In our prototype, we place a microfluidic channel on the top surface of a coverslip and coat the bottom surface with a scattering layer. The channel and the coated coverslip substrate are then placed on top of an image sensor for diffraction data acquisition. Similar to the operation of a flow cytometer, the device utilizes microfluidic flow to deliver specimens across the channel. The diffracted light from the flowing objects is modulated by the scattering layer and recorded by the image sensor for ptychographic reconstruction, where high-resolution quantitative complex images are recovered from the diffraction measurements. By using an image sensor with a 1.85 μm pixel size, our device can resolve the 550 nm linewidth on the resolution target. We validate the device by imaging different types of biospecimens, including C. elegans , yeast cells, paramecium , and closterium sp . We also demonstrate a high-resolution ptychographic reconstruction at a video framerate of 30 frames per second. The reported technique can address a wide range of biomedical needs and engenders new ptychographic imaging innovations in a flow cytometer configuration. 
    more » « less
  3. Differential phase sensitive methods, such as Nomarski microscopy, play an important role in quantitative phase imaging due to their compatibility with partially coherent illumination and excellent optical sectioning ability. In this Letter, we propose a new system, to the best of our knowledge, to retrieve differential phase information from transparent samples. It is based on a 4f optical system with an amplitude-type spatial light modulator (SLM), which removes the need for traditional differential interference contrast (DIC) optics and specialized phase-only SLMs. We demonstrate the principle of harmonically decoupled gradient light interference microscopy using standard samples, as well as static and dynamic biospecimens. 
    more » « less
  4. We report on the illustration of the first electron blocking layer (EBL) free AlInN nanowire light-emitting diodes (LEDs) operating in the deep ultraviolet (DUV) wavelength region (sub-250 nm). We have systematically analyzed the results using APSYS software and compared with simulated AlGaN nanowire DUV LEDs. From the simulation results, significant efficiency droop was observed in AlGaN based devices, attributed to the significant electron leakage. However, compared to AlGaN nanowire DUV LEDs at similar emission wavelength, the proposed single quantum well (SQW) AlInN based light-emitters offer higher internal quantum efficiency without droop up to current density of 1500 A/cm2and high output optical power. Moreover, we find that transverse magnetic polarized emission is ∼ 5 orders stronger than transverse electric polarized emission at 238 nm wavelength. Further research shows that the performance of the AlInN DUV nanowire LEDs decreases with multiple QWs in the active region due to the presence of the non-uniform carrier distribution in the active region. This study provides important insights on the design of new type of high performance AlInN nanowire DUV LEDs, by replacing currently used AlGaN semiconductors. 
    more » « less
  5. We report on the realization of top-down fabricated, electrically driven, deep-ultraviolet (DUV) AlGaN micropillar array light emitting diodes (LEDs) with high output power density. Ordered arrays of micropillars with the inverse-taper profile were formed from an AlGaN epitaxial stack (epistack) using a Ni-masked Cl2 plasma dry etch and KOH-based wet etching. Following deposition of the n-contact, polydimethylsiloxane was spin-coated and etched-back to reveal the tips of the pillars to allow for formation of the p-contact. The DUV LEDs were tested at the wafer-level using a manual probe station to characterize their electrical and optical properties, revealing stable electroluminescence at 286 nm with a narrow 9-nm linewidth. Optical output power was found to be linearly related to current density, with output power densities up to 35 mW/cm2, comparable to the results reported for epitaxially grown DUV nanowire LEDs. Simulations revealed that the inverse-taper profile of the micropillars could lead to large enhancements in light extraction efficiency (ηEXT) of up to 250% when compared to micropillars with vertical sidewalls. The realization of ordered, electrically driven, top-down fabricated micropillar DUV LEDs with competitive output power represents an important step forward in the development of high-efficiency, scalable DUV emitters for a wide range of applications. 
    more » « less