skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on February 13, 2026

Title: Possible causes of false general relativity violations in gravitational wave observations
General relativity (GR) has proven to be a highly successful theory of gravity since its inception. The theory has thrivingly passed numerous experimental tests, predominantly in weak gravity, low relative speeds, and linear regimes, but also in the strong-field and very low-speed regimes with binary pulsars. Observable gravitational waves (GWs) originate from regions of spacetime where gravity is extremely strong, making them a unique tool for testing GR, in previously inaccessible regions of large curvature, relativistic speeds, and strong gravity. Since their first detection, GWs have been extensively used to test GR, but no deviations have been found so far. Given GR’s tremendous success in explaining current astronomical observations and laboratory experiments, accepting any deviation from it requires a very high level of statistical confidence and consistency of the deviation across GW sources. In this paper, we compile a comprehensive list of potential causes that can lead to a false identification of a GR violation in standard tests of GR on data from current and future ground-based GW detectors. These causes include detector noise, signal overlaps, gaps in the data, detector calibration, source model inaccuracy, missing physics in the source and in the underlying environment model, source misidentification, and mismodeling of the astrophysical population. We also provide a rough estimate of when each of these causes will become important for tests of GR for different detector sensitivities. We argue that each of these causes should be thoroughly investigated, quantified, and ruled out before claiming a GR violation in GW observations.  more » « less
Award ID(s):
2308886 2205920 2309064 2207502 2307146 2207758 2307147 2308887
PAR ID:
10583042
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Editor(s):
NA
Publisher / Repository:
SciPost
Date Published:
Journal Name:
SciPost Physics Community Reports
ISSN:
0000-0000
Subject(s) / Keyword(s):
Tests of General Relativity
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract As the gravitational-wave (GW) detector network is upgraded and the sensitivity of the detectors improves, novel scientific avenues open for exploration. For example, tests of general relativity (GR) will become more accurate as smaller deviations can be probed. Additionally, the detection of lensed GWs becomes more likely. However, these new avenues could also interact with each other, and a GW event presenting deviations from GR could be mistaken for a lensed one. Here, we explore how phenomenological deviations from GR or binaries of exotic compact objects could impact those lensing searches focusing on a single event. We consider strong lensing, millilensing, and microlensing, and find that certain phenomenological deviations from GR may be mistaken for all of these types of lensing. Therefore, our study shows that future candidate lensing events would need to be carefully examined to avoid a false claim of lensing where instead a deviation from GR has been seen. 
    more » « less
  2. Detections of gravitational waves emitted from binary black hole coalescences allow us to probe the strong-field dynamics of general relativity (GR). One can compare the observed gravitational-wave signals with theoretical waveform models to constrain possible deviations from GR. Any physics that is not included in these waveform models might show up as apparent GR deviations. The waveform models used in current tests of GR describe binaries on quasicircular orbits, since most of the binaries detected by ground-based gravitational-wave detectors are expected to have negligible eccentricities. Thus, a signal from an eccentric binary in GR is likely to show up as a deviation from GR in the current implementation of these tests. We study the response of four standard tests of GR to eccentric binary black hole signals with the forecast O4 sensitivity of the LIGO-Virgo network. Specifically, we consider two parametrized tests (TIGER and FTI), the modified dispersion relation test, and the inspiral-merger-ringdown consistency test. To model eccentric signals, we use nonspinning numerical relativity simulations from the SXS catalog with three mass ratios (1, 2, 3), which we scale to a redshifted total mass of 80M⊙ and luminosity distance of 400 Mpc. For each of these mass ratios, we consider signals with eccentricities of ∼0.05 and ∼0.1 at 17 Hz. We find that signals with larger eccentricity lead to very significant false GR deviations in most tests while signals having smaller eccentricity lead to significant deviations in some tests. For the larger eccentricity cases, one would even get a deviation from GR with TIGER at ∼90% credibility at a distance of ≳1.5 Gpc. Thus, it will be necessary to exclude the possibility of an eccentric binary in order to make any claim about detecting a deviation from GR. 
    more » « less
  3. Using adiabatic point-particle black hole perturbation theory, we simulate plausible gravitational wave (GW) signatures in two exotic scenarios (i) where a small black hole is emitted by a larger one (‘black hole emission’) and (ii) where a small black hole is emitted by a larger one and subsequently absorbed back (‘black hole absorption’). While such scenarios are forbidden in general relativity (GR), alternative theories (such as certain quantum gravity scenarios obeying the weak gravity conjecture, white holes, and Hawking radiation) may allow them. By leveraging the phenomenology of black hole emission and absorption signals, we introduce straightforward modifications to existing gravitational waveform models to mimic gravitational radiation associated with these exotic events. We anticipate that these (incomplete but) initial simulations, coupled with the adjusted waveform models, will aid in the development of null tests for GR using GWs. 
    more » « less
  4. Abstract The Gravity Field and Steady‐State Ocean Circulation Explorer (GOCE) and CHAllenging Minisatellite Payload (CHAMP) satellites measure in‐situ thermospheric density and cross‐track wind. When propagating obliquely to the satellite track in a horizontal plane (i.e., not purely along‐track or cross‐track), gravity waves (GWs) can be observed both in the density and cross‐track wind perturbations. We employ the Wavelet Analysis, red noise model, dissipative dispersion and polarization relations for thermospheric GWs, and specific criteria to determine whether a quiet‐time (Kp < 3) thermospheric traveling atmospheric disturbances (TADs) event is a GW or not. The first global morphology of thermospheric GWs instead of TADs is reported. The fast intrinsic horizontal phase speed (cIH> 600 m/s) of most GWs suggests that they are not generated in the lower/middle atmosphere (wherecIH < 300 m/s). A second population of GWs with slower speeds (cIH = 50–250 m/s) in GOCE are likely from the lower/middle atmosphere, but they occur much less frequently in CHAMP. GW hotspots occur during the high‐latitude and the winter midlatitude regions. GW amplitudes exhibit semi‐annual and annual variations. These findings suggest that most GOCE and CHAMP GWs are higher‐order GWs from primary GW sources in the lower/middle atmosphere. Finally, the average propagation direction of the CHAMP GWs exhibits a clear diurnal cycle, with clockwise (counterclockwise) occurring in the northern (southern) hemisphere and equatorward propagation occurring at ∼13 LST. This suggests that the predominant GW propagation direction is opposite to the background wind direction. 
    more » « less
  5. Abstract The 17‐year SABER‐observed gravity wave (GW) temperature variances reveal significant responses of GWs to the Madden‐Julian Oscillation (MJO) over the middle atmosphere (30–100 km) in tropics and extratropics (45°S to 45°N) for boreal winter. The responses vary significantly with latitude but barely with altitude. From 20°S to 45°N, strong positive anomalies are found for MJO Phases 3–5, while negative anomalies for Phases 7–8. From 45–20°S, these patterns are reversed. The peak‐to‐peak differences (positive‐to‐negative anomalies) are ~6–16% relative to the seasonal mean. Comparison with MJO modulations on tropical convection and polar vortex suggests that GW responses in tropics may result from the modulation of GW source, while responses in northern extratropics may result from the modulation of polar vortex, which in turn modulates GW activities. These results highlight the importance of GWs to imprint the tropical MJO signals vertically to the middle atmosphere and horizontally to extratropical regions. 
    more » « less