skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Ultrasonic vibration-assisted high-resolution electrohydrodynamic (EHD) printing
Electrohydrodynamic (EHD) printing has become a promising and cost-effective technique for producing high-resolution and large-scale features. One widely recognized obstacle in EHD printing is nozzle clogging due to solvent evaporation or ink polymerization. Moreover, printing highly viscous materials often requires pressure or other external force to assist the ink flow during the printing, which increases the complexity of process control and the required energy. In this work, we developed a novel ultrasonic vibration-assisted EHD printhead and associated process to effectively eliminate the nozzle clogging for the printing of high-viscosity and high-evaporation-rate inks. A series of experimental tests were conducted to characterize the printhead design and process parameters (i.e., vibration frequency, vibration amplitude, and printing voltage). The results demonstrated that superimposing ultrasonic vibration on the EHD printing nozzle can effectively enhance current EHD printing capabilities, such as reducing required pressure, eliminating nozzle clogging, and providing stable and continuous printing for high viscosity and high solvent evaporation rate material. With the optimal parameters, a filament with a diameter of around 1 µm can be continuously printed. In the paper, we successfully applied this developed ultrasonic-assisted EHD process to print high-resolution 2D patterns.  more » « less
Award ID(s):
2200200
PAR ID:
10583099
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Society of Manufacturing Engineering
Date Published:
Journal Name:
Manufacturing Letters
Volume:
41
Issue:
S
ISSN:
2213-8463
Page Range / eLocation ID:
907 to 913
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A silver nanowire (AgNW) based conductor is a promising component for flexible and stretchable electronics. A wide range of flexible/stretchable devices using AgNW conductors has been demonstrated recently. High-resolution, high-throughput printing of AgNWs remains a critical challenge. Electrohydrodynamic (EHD) printing has been developed as a promising technique to print different materials on a variety of substrates with high resolution. Here, AgNW ink was developed for EHD printing. The printed features can be controlled by several parameters including AgNW concentration, ink viscosity, printing speed, stand-off distance, etc . With this method, AgNW patterns can be printed on a range of substrates, e.g. paper, polyethylene terephthalate (PET), glass, polydimethylsiloxane (PDMS), etc. First, AgNW samples on PDMS were characterized under bending and stretching. Then AgNW heaters and electrocardiogram (ECG) electrodes were fabricated to demonstrate the potential of this printing technique for AgNW-based flexible and stretchable devices. 
    more » « less
  2. Abstract Three-dimensional (3D) microneedle arrays (MAs) have shown remarkable performances for a wide range of biomedical applications. Achieving advanced customizable 3D MAs for personalized research and treatment remain a formidable challenge. In this paper, we have developed a high-resolution electrohydrodynamic (EHD) 3D printing process for fabricating customizable 3D MAs with economical and biocompatible molten alloy. The critical printing parameters (i.e., voltage and pressure) on the printing process for both two-dimensional (2D) and 3D features are characterized, and an optimal set of printing parameters was obtained for printing 3D MAs. We have also studied the effect of the tip-nozzle separation speed on the final tip dimension, which will directly influence MAs' insertion performance and functions. With the optimal process parameters, we successfully EHD printed customizable 3D MAs with varying spacing distances and shank heights. A 3 × 3 customized 3D MAs configuration with various heights ranging from 0.8 mm to 1 mm and a spacing distance as small as 350 μm were successfully fabricated, in which the diameter of each individual microneedle was as small as 100 μm. A series of tests were conducted to evaluate the printed 3D MAs. The experimental results demonstrated that the printed 3D MAs exhibit good mechanical strength for implanting and good electrical properties for electrophysiological sensing and stimulation. All results show the potential applications of the EHD printing technique in fabricating cost-effective, customizable, high-performance MAs for biomedical applications. 
    more » « less
  3. Abstract Direct ink writing (DIW) process is a facile additive manufacturing technology to fabricate three-dimensional (3D) objects with various materials. Its versatility has attracted considerable interest in academia and industry in recent years. As such, upsurging endeavors are invested in advancing the ink flow behaviors in order to optimize the process resolution and the printing quality. However, so far, the physical phenomena during the DIW process are not revealed in detail, leaving a research gap between the physical experiments and its underlying theories. Here, we present a comprehensive analytical study of non-Newtonian ink flow behavior during the DIW process. Different syringe-nozzle geometries are modeled for the comparative case studies. By using the computational fluid dynamics (CFD) simulation method, we reveal the shear-thinning property during the ink extrusion process. Besides, we study the viscosity, shear stress, and velocity fields, and analyze the advantages and drawbacks of each syringe-nozzle model. On the basis of these investigations and analyses, we propose an improved syringe-nozzle geometry for stable extrusion and high printing quality. A set of DIW printing experiments and rheological characterizations are carried out to verify the simulation studies. The results developed in this work offer an in-depth understanding of the ink flow behavior in the DIW process, providing valuable guidelines for optimizing the physical DIW configuration toward high-resolution printing and, consequently, improving the performance of DIW-printed objects. 
    more » « less
  4. Abstract Printed electronics have made remarkable progress in recent years and inkjet printing (IJP) has emerged as one of the leading methods for fabricating printed electronic devices. However, challenges such as nozzle clogging, and strict ink formulation constraints have limited their widespread use. To address this issue, a novel nozzle‐free printing technology is explored, which is enabled by laser‐generated focused ultrasound, as a potential alternative printing modality called Shock‐wave Jet Printing (SJP). Specifically, the performance of SJP‐printed and IJP‐printed bottom‐gated carbon nanotube (CNT) thin film transistors (TFTs) is compared. While IJP required ten print passes to achieve fully functional devices with channel dimensions ranging from tens to hundreds of micrometers, SJP achieved comparable performance with just a single pass. For optimized devices, SJP demonstrated six times higher maximum mobility than IJP‐printed devices. Furthermore, the advantages of nozzle‐free printing are evident, as SJP successfully printed stored and unsonicated inks, delivering moderate electrical performance, whereas IJP suffered from nozzle clogging due to CNT agglomeration. Moreover, SJP can print significantly longer CNTs, spanning the entire range of tube lengths of commercially available CNT ink. The findings from this study contribute to the advancement of nanomaterial printing, ink formulation, and the development of cost‐effective printable electronics. 
    more » « less
  5. Abstract 3D printing is a popular fabrication technique because of its ability to produce complex architectures. Melt‐based 3D printing is widely used for thermoplastic polymers like poly(caprolactone) (PCL), poly(lactic acid) (PLA), and poly(lactic‐co‐glycolic acid) (PLGA) because of their low processing temperatures. However, traditional melt‐based techniques require processing temperatures and pressures high enough to achieve continuous flow, limiting the type of polymer that can be printed. Solvent‐cast printing (SCP) offers an alternative approach to print a wider range of polymers. Polymers are dissolved in a volatile solvent that evaporates during deposition to produce a solid polymer filament. SCP, therefore, requires optimizing polymer concentration in the ink, print pressure, and print speed to achieve desired print fidelity. Here, capillary flow analysis shows how print pressure affects the process‐apparent viscosity of PCL, PLA, and PLGA inks. Ink viscosity is also measured using rheology, which is used to link a specific ink viscosity to a predicted set of print pressure and print speed for all three polymers. These results demonstrate how this approach can be used to accelerate optimization by significantly reducing the number of parameter combinations. This strategy can be applied to other polymers to expand the library of polymers printable with SCP. 
    more » « less