This complete research paper assesses the first-year implementation of an NSF-funded S-STEM effort, the SUCCESS Scholars Program (SSP), established in the Fall of 2022 at Louisiana Tech University. Louisiana Tech University is a Carnegie High Research Activity University that has approximately 20% of its 7500 undergraduates as engineering majors, is geographically distanced from large metropolitan areas but draws its student population both statewide and regionally and operates on the quarter calendar. Louisiana Tech University merged the math, chemistry, and physics programs with the engineering, technology, and computer science programs into a single college in 1995 and created an integrated freshman engineering curriculum in 1998. Louisiana Tech University has a long history of educational innovations in engineering education, with a hands-on project-based approach implemented in 2004 and four other NSF-funded programs to increase student success in engineering since 2007. The SSP builds on these prior efforts by providing financial, academic, personal, and professional support to engineering students starting in their first year of college through four years of academic study. The first cohort of twenty-four students was selected through an application process after learning about the program at orientation. The SSP team focused heavily in the first year on academic support and community building while also providing each student a financial scholarship of up to $10,000 depending on unmet financial need. Throughout the first year, students in the SSP attended a three-day-a-week first-year engineering course instead of the typical two-day-a-week course. This provided additional access to the lab equipment, contact hours with their instructor, practice problems, and helped foster community among the cohort. Additional academic support was provided through supplemental instruction sessions strategically designed to provide support in both their engineering and mathematics courses. These sessions were led by upper-level peer mentors. Students were connected with faculty mentors in their discipline through lunches that the SSP faculty team provided each week. These lunches helped reduce food insecurity while also providing an inviting atmosphere for interaction between peers and faculty. Lunches also offered an opportunity to have career discussions and bring in professional development speakers like student organization leaders and graduate students. At the start of the first quarter of their sophomore year, nineteen students were either still on track or just one quarter behind in their engineering curriculum. This record will be compared with the approximately 420 students who either were eligible or did not take part in this program. Historical data will be reviewed to determine how predictive these initial markers are toward completion of the degree.
more »
« less
Preparing Early Engineers through Context, Connections, and Community
This NSF-IUSE project began in fall 2022 and features cross-disciplinary collaboration between faculty in engineering, math, history, English, and physics to design, pilot, and assess a new learning community approach to welcome precalculus level students into an engineering transfer degree program. The learning community spans two academic quarters and includes six different courses. The place-based curriculum includes contextualized precalculus and English composition, Pacific Northwest history, orientation to the engineering profession, and introductory skills such as problem-solving, computer programming, and team-based design. The program also features community-engaged project-based learning in the first quarter and a course-based undergraduate research experience in the second quarter, both with an overarching theme of energy and water resources. The approach leverages multiple high-impact educational practices to promote deep conceptual learning, motivate foundational skill development, explore social relevance and connection, and ultimately seeks to strengthen our students’ engineering identity, sense of belonging, and general academic preparation for success in an engineering major. Fall 2023 marked the first quarter of piloting the new learning community with a cohort of 19 students out of a capacity limit of 24. This paper reports on the demographics of the first cohort and compares them to enrollment in a parallel section of our Introduction to Engineering course that is not linked. We also share some of the students’ reasons for enrolling and their feedback on the experience. We found that students in populations with intensive entry advising such as International Programs and Running Start (a high school dual-enrollment program) appear to be overrepresented in the first cohort. This finding correlates with a theme in nearly all student responses that they learned about the program through advising. Finally, we describe some example activities and student projects that illustrate how the curriculum design integrates content across the academic disciplines involved.
more »
« less
- Award ID(s):
- 2147320
- PAR ID:
- 10583885
- Publisher / Repository:
- 2024 ASEE Annual Conference
- Date Published:
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The Alternative Pathways to Excellence (APEX): Engineering a Transfer-Friendly Experience program at the University of St. Thomas is an NSF S-STEM 25-514 Track 2 project, award number 2130042. The aim of the grant is to build a foundation for non-traditional students and transfer students through recruitment, academic support, community-built retention efforts, student success, networking, graduation, and post-graduation placement in industry and/or graduate school. Key to the efforts is development of the support system for high academic potential students from low-income households through removal of systematic curricular barriers, strong empowerment through a community of peers, hidden curriculum mentoring from culturally informed faculty, industry coaching, and up to $10,000 annual scholarships. The inaugural APEX scholar cohort enrolled in Fall 2022. The effectiveness research examines data related to enrollment, retention, and success metrics for students in engineering, specifically comparing these factors among engineering transfer students and the APEX scholars group. Although not all APEX students are transfer students, the program targets the transfer student population by creating new pipelines from five community college partners. This paper reviews key comparison data points, quantitative analysis of this data, qualitative analysis of student feedback, and demonstrates the initial success of the program.more » « less
-
First-year students frequently struggle with the transition from high school to college as they juggle academic requirements, new living accommodations, and social expectations. Transitional struggles can be amplified for engineering students due to the challenging mathematics, engineering, and science courses taking during their first term. First-year students are commonly ill-equipped to manage their time wisely and study properly. Structure and guidance can assist in fostering skills and behaviors that are vital for success. The SUCCESS Scholars (SS) Program was developed to provide foundational support for 24 low-income first-year engineering students. The program was designed to provide academic support in the form of extra Fridays sessions for engineering and peer mentorship led supplemental instruction (SI). The 24 students were grouped into exclusive sections of a precalculus course and an engineering course. Two upper-level students were selected to lead the SI sessions while providing peer mentorship and community engagement for the first-year students. The faculty teaching both courses worked together with the peer mentors to develop a plan for the SI sessions. This paper will detail the SS Program and analyze the performance of the students in their first quarter at the university. Data from common exams given in their precalculus and engineering courses will be used to examine the effectiveness of the program.more » « less
-
Texas State University received an NSF S-STEM award to support two cohorts of talented, low-income engineering majors, with the first cohort starting their freshman year in Fall 2024. In addition to the scholarships awarded, this program aims to increase students’ engineering design self-efficacy, engineering identity, and improve persistence to graduation. The program includes unique strategies for achieving these goals, emphasizing mentoring and building a sense of community among participants. The SEED scholars were paired with a faculty mentor in their engineering major prior to their arrival on campus for their freshman year. This early contact was intended to open lines of communication with a faculty member, so the students felt they had a trustworthy source of information from someone who cared about them. As Texas State University has a high number of first-generation college students, there was an expectation that this program would likely attract a fair number of first-generation students. Without another family member’s experience about how to be a college student, having this faculty mentor gave these students a person who could help them answer questions and navigate the process leading to their first semester on campus. For instance, mentors were able to talk with students about dorm selection, mathematics course placement (including strategies for placing into a higher-level mathematics course), and what to expect in their engineering coursework. Student participation in an Engineering Living Learning Community (LLC) is another unique program feature to enhance community among the SEED scholars. A general description of the program and preliminary results from the students’ self-reported sense of belonging in engineering, engineering design self-efficacy, and engineering identity are presented in this paper.more » « less
-
In this Work-in-Progress paper, we report on the challenges and successes of a large-scale First- Year Engineering and Computer Science Program at an urban comprehensive university, using quantitative and qualitative assessment results. Large-scale intervention programs are especially relevant to comprehensive minority serving institutions (MSIs) that serve a high percentage of first-generation college students who often face academic and socioeconomic barriers. Our program was piloted in 2015 with 30 engineering students, currently enrolls 60 engineering and computer science students, and is expected to grow to over 200 students by Fall 2020. The firstyear program interventions include: (i) block schedules for each cohort in the first year; (ii) redesigned project-based introduction to engineering and introduction to computer science courses; (iii) an introduction to mechanics course, which provides students with the foundation needed to succeed in the traditional physics sequence; and (iv) peer-led supplemental instruction (SI) workshops for Calculus, Physics and Chemistry. A faculty mentorship program was implemented to provide additional support to students, but was phased out after the first year. Challenges encountered in the process of expanding the program include administrative, such as scheduling and training faculty and SI leaders; barriers to improvement of math and science instruction; and more holistic concerns such as creating a sense of community and identity for the program. Quantitative data on academic performance includes metrics such as STEM GPA and persistence, along with the Force Concept Inventory (FCI) for physics. Qualitative assessments of the program have used student and instructor surveys, focus groups, and individual interviews to measure relationships among factors associated with college student support and to extract student perspectives on what works best for them. Four years of data tell a mixed story, in which the qualitative effect of the interventions on student confidence and identity is strong, while academic performance is not yet significantly different than that of comparison groups. One of the most significant results of the program is the development of a FYrE Professional Learning Community which includes faculty (both tenure-track and adjunct), department chairs, staff, and administrators from across the campus.more » « less
An official website of the United States government

