Abstract The ionospheric Alfvén resonator (IAR) is a structure formed by the rapid decrease in the plasma density above a planetary ionosphere. This results in a corresponding increase in the Alfvén speed that can provide partial reflection of Alfvén waves. At Earth, the IAR on auroral field lines is associated with the broadband acceleration of auroral particles, sometimes termed the Alfvénic aurora. This arises since phase mixing in the IAR reduces the perpendicular wavelength of the Alfvén waves, which enhances the parallel electric field due to electron inertia. This parallel electric field fluctuates at frequencies of 0.1–20.0 Hz, comparable to the electron transit time through the acceleration region, leading to the broadband acceleration. The prevalence of such broadband acceleration at Jupiter suggests that a similar process can occur in the Jovian IAR. A numerical model of Alfvén wave propagation in the Jovian IAR has been developed to investigate these interactions, indicating that the IAR resonant frequencies are in the same range as those at Earth. This model describes the evolution of the electric and magnetic fields in the low‐altitude region close to Jupiter that is sampled during Juno's perijove passes. In particular, the model relates measurement of magnetic fields below the ion cyclotron frequency from the MAG and Waves instruments on Juno and electric fields from Waves to the associated parallel electric fields that can accelerate auroral particles. 
                        more » 
                        « less   
                    This content will become publicly available on March 19, 2026
                            
                            Measurement of Energy Reduction of Inertial Alfvén Waves Propagating through Parallel Gradients in the Alfvén Speed
                        
                    
    
            Abstract We have studied the propagation of inertial Alfvén waves through parallel gradients in the Alfvén speed using the Large Plasma Device at the University of California, Los Angeles. The reflection and transmission of Alfvén waves through inhomogeneities in the background plasma are important for understanding wave propagation, turbulence, and heating in space, laboratory, and astrophysical plasmas. Here we present inertial Alfvén waves under conditions relevant to solar flares and the solar corona. We find that the transmission of the inertial Alfvén waves is reduced as the sharpness of the gradient is increased. Any reflected waves were below the detection limit of our experiment, and reflection cannot account for all of the energy not transmitted through the gradient. Our findings indicate that, for both kinetic and inertial Alfvén waves, the controlling parameter for the transmission of the waves through an Alfvén speed gradient is the ratio of the Alfvén wavelength along the gradient divided by the scale length of the gradient. Furthermore, our results suggest that an as-yet-unidentified damping process occurs in the gradient. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2401110
- PAR ID:
- 10584005
- Publisher / Repository:
- American Astronomical Society
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 982
- Issue:
- 1
- ISSN:
- 0004-637X
- Page Range / eLocation ID:
- 52
- Subject(s) / Keyword(s):
- The Sun Plasma astrophysics Plasma physics Solar corona Solar flares Solar coronal heating Alfvén waves
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            A growing body of evidence suggests that the solar wind is powered to a large extent by an Alfvén-wave (AW) energy flux. AWs energize the solar wind via two mechanisms: heating and work. We use high-resolution direct numerical simulations of reflection-driven AW turbulence (RDAWT) in a fast-solar-wind stream emanating from a coronal hole to investigate both mechanisms. In particular, we compute the fraction of the AW power at the coronal base ( $$P_\textrm {AWb}$$ ) that is transferred to solar-wind particles via heating between the coronal base and heliocentric distance $$r$$ , which we denote by $$\chi _{H}(r)$$ , and the fraction that is transferred via work, which we denote by $$\chi _{W}(r)$$ . We find that $$\chi _{W}(r_{A})$$ ranges from 0.15 to 0.3, where $$r_{A}$$ is the Alfvén critical point. This value is small compared with one because the Alfvén speed $$v_{A}$$ exceeds the outflow velocity $$U$$ at $$r < r_{A}$$ , so the AWs race through the plasma without doing much work. At $$r>r_{A}$$ , where $$v_{A} < U$$ , the AWs are in an approximate sense ‘stuck to the plasma’, which helps them do pressure work as the plasma expands. However, much of the AW power has dissipated by the time the AWs reach $$r=r_{A}$$ , so the total rate at which AWs do work on the plasma at $$r>r_{A}$$ is a modest fraction of $$P_\textrm {AWb}$$ . We find that heating is more effective than work at $$r < r_{A}$$ , with $$\chi _{H}(r_{A})$$ ranging from 0.5 to 0.7. The reason that $$\chi _{H} \geq 0.5$$ in our simulations is that an appreciable fraction of the local AW power dissipates within each Alfvén-speed scale height in RDAWT, and there are a few Alfvén-speed scale heights between the coronal base and $$r_{A}$$ . A given amount of heating produces more magnetic moment in regions of weaker magnetic field. Thus, paradoxically, the average proton magnetic moment increases robustly with increasing $$r$$ at $$r>r_{A}$$ , even though the total rate at which AW energy is transferred to particles at $$r>r_{A}$$ is a small fraction of $$P_\textrm {AWb}$$ .more » « less
- 
            ABSTRACT We present numerical simulation results for the propagation of Alfvén waves in the charge starvation regime. This is the regime where the plasma density is below the critical value required to supply the current for the wave. We analyse a conservative scenario where Alfvén waves pick up charges from the region where the charge density exceeds the critical value and advect them along at a high Lorentz factor. The system consisting of the Alfvén wave and charges being carried with it, which we call charge-carrying Alfvén wave (CC-AW), moves through a medium with small, but non-zero, plasma density. We find that the interaction between CC-AW and the stationary medium has a two-stream like instability which leads to the emergence of a strong electric field along the direction of the unperturbed magnetic field. The growth rate of this instability is of the order of the plasma frequency of the medium encountered by the CC-AW. Our numerical code follows the system for hundreds of wave periods. The numerical calculations suggest that the final strength of the electric field is of the order of a few per cent of the AW amplitude. Little radiation is produced by the sinusoidally oscillating currents associated with the instability during the linear growth phase. However, in the non-linear phase, the fluctuating current density produces strong EM radiation near the plasma frequency and limits the growth of the instability.more » « less
- 
            Abstract The coronal heating problem has been a major challenge in solar physics, and a tremendous amount of effort has been made over the past several decades to solve it. In this paper, we aim at answering how the physical processes behind the Alfvén wave turbulent heating adopted in the Alfvén Wave Solar atmosphere Model (AWSoM) unfold in individual plasma loops in an active region (AR). We perform comprehensive investigations in a statistical manner on the wave dissipation and reflection, temperature distribution, heating scaling laws, and energy balance along the loops, providing in-depth insights into the energy allocation in the lower solar atmosphere. We demonstrate that our 3D global model with a physics-based phenomenological formulation for the Alfvén wave turbulent heating yields a heating rate exponentially decreasing from loop footpoints to top, which had been empirically assumed in the past literature. A detailed differential emission measure (DEM) analysis of the AR is also performed, and the simulation compares favorably with DEM curves obtained from Hinode/Extreme-ultraviolet Imaging Spectrometer observations. This is the first work to examine the detailed AR energetics of our AWSoM model with high numerical resolution and further demonstrates the capabilities of low-frequency Alfvén wave turbulent heating in producing realistic plasma properties and energetics in an AR.more » « less
- 
            ABSTRACT Ion beam-driven instabilities in a collisionless space plasma with low β, i.e. low plasma and magnetic pressure ratio, are investigated using particle-in-cell (PIC) simulations. Specifically, the effects of different ion drift velocities on the development of Buneman and resonant electromagnetic (EM) right-handed (RH) ion beam instabilities are studied. Our simulations reveal that both instabilities can be driven when the ion beam drift exceeds the theoretical thresholds. The Buneman instability, which is weakly triggered initially, dissipates only a small fraction of the kinetic energy of the ion beam while causing significant electron heating, owing to the small electron-ion mass ratio. However, we find that the ion beam-driven Buneman instability is quenched effectively by the resonant EM RH ion beam instability. Instead, the resonant EM RH ion beam instability dominates when the ion drift velocity is larger than the Alfvén speed, leading to the generation of RH Alfvén waves and RH whistler waves. We find that the intensity of Alfvén waves decreases with decrease of ion beam drift velocity, while the intensity of whistler waves increases. Our results provide new insights into the complex interplay between ion beams and plasma instabilities in low β collisionless space plasmas.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
