Abstract Mitigating the effects of climate stress on crops is important for global food security. The microbiome associated with plant roots, the rhizobiome, can harbor beneficial microbes that alleviate stress, but the factors influencing their recruitment are unclear. We conducted a greenhouse experiment using field soil with a legacy of growing switchgrass and common bean to investigate the impact of short-term drought severity on the recruitment of active bacterial rhizobiome members. We applied 16S rRNA and 16S rRNA gene sequencing for both crops and metabolite profiling for switchgrass. We included planted and unplanted conditions to distinguish environment- versus plant-mediated rhizobiome drivers. Differences in community structure were observed between crops and between drought and watered and planted and unplanted treatments within crops. Despite crop-specific communities, drought rhizobiome dynamics were similar across the two crops. The presence of a plant more strongly explained the rhizobiome variation in bean (17%) than in switchgrass (3%), with a small effect of plant mediation during drought observed only for the bean rhizobiome. The switchgrass rhizobiome was stable despite changes in rhizosphere metabolite profiles between planted and unplanted treatments. We conclude that rhizobiome responses to short-term drought are crop-specific, with possible decoupling of plant exudation from rhizobiome responses. 
                        more » 
                        « less   
                    
                            
                            Data from: Metabolomics dataset for disentangling plant and environment-mediated drivers of active rhizosphere 1 bacterial community dynamics during short-term drought
                        
                    
    
            Background: Mitigating the effects of climate stress on crops is important for global food security. The microbiome associated with plant roots, henceforth, the rhizobiome, can harbor beneficial microbes that alleviate stress impacts. However, the factors influencing the recruitment of the rhizobiome during stress are unclear. We conducted an experiment to understand bacterial rhizobiome responses to short-term drought for two crop species: switchgrass and common bean. We used 16S rRNA and 16S rRNA gene sequencing to investigate the impact of drought severity on the recruitment of active bacterial rhizobiome members. We included planted and unplanted conditions to distinguish the environment- versus plant mediated drivers of the active rhizobiome. Results: Though each crop had a distinct rhizobiome, there were differences in the active microbiome structure between drought and watered and between planted and unplanted treatments. Despite their different community structures, the drought rhizobiome dynamics were similar across the two crops. However, the presence of a plant more strongly explained the rhizobiome variation in bean (17%) than in switchgrass (3%), with a small effect of plant mediation during drought only observed for the bean rhizobiome. The switchgrass rhizobiome was stable despite differences in the rhizosphere metabolite profiles between planted and unplanted treatments. Specifically, steroidal saponins and diterpennoids were enriched in drought, planted switchgrass soils. Conclusions: We conclude that rhizobiome benefits to resist short-term drought are crop-specific, with the possibility of decoupling of plant exudation and rhizobiome responses, as we observed in switchgrass. We propose bacterial taxa uniquely associated with common bean plants during the short-term drought, which could be further evaluated to determine any plant benefit during drought. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1832042
- PAR ID:
- 10584018
- Publisher / Repository:
- Dryad
- Date Published:
- Subject(s) / Keyword(s):
- FOS: Biological sciences FOS: Biological sciences Mass spectrometry LC-MS Untargeted metabolomics Switchgrass Drought saponins terpenoids specialized metabolites rhizosphere soil
- Format(s):
- Medium: X Size: 19358801028 bytes
- Size(s):
- 19358801028 bytes
- Right(s):
- Creative Commons Zero v1.0 Universal
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Arias, Renee S. (Ed.)ABSTRACT Due to climate change, drought frequencies and severities are predicted to increase across the United States. Plant responses and adaptation to stresses depend on plant genetic and environmental factors. Understanding the effect of those factors on plant performance is required to predict species’ responses to environmental change. We used reciprocal gardens planted with distinct regional ecotypes of the perennial grassAndropogon gerardiiadapted to dry, mesic, and wet environments to characterize their rhizosphere communities using 16S rRNA metabarcode sequencing. Even though the local microbial pool was the main driver of these rhizosphere communities, the significant plant ecotypic effect highlighted active microbial recruitment in the rhizosphere, driven by ecotype or plant genetic background. Our data also suggest that ecotypes planted at their homesites were more successful in recruiting rhizosphere community members that were unique to the location. The link between the plants’ homesite and the specific local microbes supported the “home field advantage” hypothesis. The unique homesite microbes may represent microbial specialists that are linked to plant stress responses. Furthermore, our data support ecotypic variation in the recruitment of congeneric but distinct bacterial variants, highlighting the nuanced plant ecotype effects on rhizosphere microbiome recruitment. These results improve our understanding of the complex plant host–soil microbe interactions and should facilitate further studies focused on exploring the functional potential of recruited microbes. Our study has the potential to aid in predicting grassland ecosystem responses to climate change and impact restoration management practices to promote grassland sustainability. IMPORTANCEIn this study, we used reciprocal gardens located across a steep precipitation gradient to characterize rhizosphere communities of distinct dry, mesic, and wet regional ecotypes of the perennial grassAndropogon gerardii. We used 16S rRNA amplicon sequencing and focused oligotyping analysis and showed that even though location was the main driver of the microbial communities, ecotypes could potentially recruit distinct bacterial populations. We showed that differentA. gerardiiecotypes were more successful in overall community recruitment and recruitment of microbes unique to the “home” environment, when growing at their “home site.” We found evidence for “home-field advantage” interactions between the host and host–root-associated bacterial communities, and the capability of ecotypes to recruit specialized microbes that were potentially linked to plant stress responses. Our study aids in a better understanding of the factors that affect plant adaptation, improve management strategies, and predict grassland function under the changing climate.more » « less
- 
            Drought stress has a significant impact on agricultural productivity, affecting key crops such as soybeans, the second most widely cultivated crop in the United States. Endophytic and rhizospheric microbial diversity analyses were conducted with soybean plants cultivated during the 2023 growing season amid extreme weather conditions of prolonged high temperatures and drought in Louisiana. Specifically, surviving and non-surviving soybean plants were collected from two plots of a Louisiana soybean field severely damaged by extreme heat and drought conditions in 2023. Although no significant difference was observed between surviving and non-surviving plants in microbial diversity of the rhizosphere, obvious differences were found in the structure of the endophytic microbial community in root tissues between the two plant conditions. In particular, the bacterial genera belonging to Proteobacteria, Pseudomonas and Pantoea, were predominant in the surviving root tissues, while the bacterial genus Streptomyces was conspicuously dominant in the non-surviving (dead) root tissues. Co-occurrence patterns and network centrality analyses enabled us to discern the intricate characteristics of operational taxonomic units (OTUs) within endophytic and rhizospheric networks. Additionally, we isolated and identified bacterial strains that enhanced soybean tolerance to drought stresses, which were sourced from soybean plants under a drought field condition. The 16S rDNA sequence analysis revealed that the beneficial bacterial strains belong to the genera Acinetobacter, Pseudomonas, Enterobacter, and Stenotrophomonas. Specific bacterial strains, particularly those identified as Acinetobacter pittii and Pseudomonas sp., significantly enhanced plant growth metrics and reduced drought stress indices in soybean plants through seed treatment. Overall, this study advances our understanding of the soybean-associated microbiome structure under drought stress, paving the way for future research to develop innovative strategies and biological tools for enhancing soybean resilience to drought.more » « less
- 
            ABSTRACT At any given time, only a subset of microbial community members are active in their environment. The others are in a state of dormancy, with strongly reduced metabolic rates. It is of interest to distinguish active and inactive microbial cells and taxa to understand their functional contributions to ecosystem processes and to understand shifts in microbial activity in response to change. Of the methods used to assess microbial activity-dormancy dynamics, 16S rRNA/rRNA gene amplicons (16S ratios) and active cell staining with 5-cyano-2,3-ditolyl tetrazolium chloride (CTC) are two of the most common, yet each method has limitations. Given that in situ activity-dormancy dynamics are proxied only by laboratory methods, further study is needed to assess the level of agreement and potential complementarity of these methods. We conducted two experiments investigating microbial activity in plant-associated soils. First, we treated corn field soil with phytohormones to simulate plant soil stress signaling, and second, we used rhizosphere soil from common bean plants exposed to drought or nutrient enrichment. Overall, the 16S ratio and CTC methods exhibited similar patterns of relative activity across treatments when treatment effects were large, and the instances in which they differed could be attributed to changes in community size (e.g., cell death or growth). Therefore, regardless of the method used to assess activity, we recommend quantifying community size to inform ecological interpretation. Our results suggest that the 16S ratio and CTC methods report comparable patterns of activity that can be applied to observe ecological dynamics over time, space, or experimental treatment. IMPORTANCE Although the majority of microorganisms in natural ecosystems are dormant, relatively little is known about the dynamics of the active and dormant microbial pools through both space and time. The limited knowledge of microbial activity-dormancy dynamics is in part due to uncertainty in the methods currently used to quantify active taxa. Here, we directly compared two of the most common methods (16S ratios and active cell staining) for estimating microbial activity in plant-associated soil and found that they were largely in agreement in the overarching patterns. Our results suggest that 16S ratios and active cell staining provide complementary information for measuring and interpreting microbial activity-dormancy dynamics in soils. They also support the idea that 16S rRNA/rRNA gene ratios have comparative value and offer a high-throughput, sequencing-based option for understanding relative changes in microbiome activity, as long as this method is coupled with quantification of community size.more » « less
- 
            Abstract Although the importance of the soil microbiome in mediating plant community structures and functions has been increasingly emphasized in ecological studies, the biological processes driving crop diversity overyielding remain unexplained in agriculture. Based on the plant–soil feedback (PSF) theory and method, we quantified to what extent and how soil microbes contributed to intercropping overyielding.Soils were collected as inocula and sequenced from a unique 10‐year field experiment, consisting of monoculture, intercropping and rotation planted with wheat (Triticum aestivum), maize (Zea mays)or faba bean (Vicia faba). A PSF greenhouse study was conducted to test microbial effects on three crops' growth in monoculture or intercropping.In wheat & faba bean (W&F) and maize & faba bean (M&F) systems, soil microbes drove intercropping overyielding compared to monoculture, with 28%–51% of the overyielding contributed by microbial legacies. The overyielding effects resulted from negative PSFs in both systems, as crops, in particular faba bean grew better in soils conditioned by other crops than itself. Moreover, faba bean grew better in soils from intercropping or rotation than from the average of monocultures, indicating a strong positive legacy effect of multispecies cropping systems. However, with positive PSF and negative legacy benefit effect of intercropping/rotation, we did not observe significant overyielding in the W&M system.With more bacterial and fungal dissimilarities by metabarcoding in heterospecific than its own soil, the better it improved faba bean growth. More detailed analysis showed faba bean monoculture soil accumulated more putative pathogens with higherFusariumrelative abundance and moreFusarium oxysporumgene copies by qPCR, while in heterospecific soils, there were less pathogenic effects when cereals were engaged. Further analysis in maize/faba bean intercropping also showed an increase of rhizobia relative abundance.Synthesis and applications. Our results demonstrate a soil microbiome‐mediated advantage in intercropping through suppression of the negative PSF of pathogens and increasing beneficial microbes. As microbial mediation of overyielding is context‐dependent, we conclude that the dynamics of both beneficial and pathogenic microbes should be considered in designing cropping systems for sustainable agriculture, particularly including combinations of legumes and cereals.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
