skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on March 1, 2026

Title: Synergistic Adhesion and Shape Deformation in Nanowire‐Structured Liquid Crystal Elastomers
Abstract Nature provides many examples of the benefits of nanoscopic surface structures in areas of adhesion and antifouling. Herein, the design, fabrication, and characterization of liquid crystal elastomer (LCE) films are presented with nanowire surface structures that exhibit tunable stimuli‐responsive deformations and enhanced adhesion properties. The LCE films are shown to curl toward the side with the nanowires when stimulated by heat or organic solvent vapors. In contrast, when a droplet of the same solvent is placed on the film, it curls away from the nanowire side due to nanowire‐induced capillary forces that cause unequal swelling. This characteristic curling deformation is shown to be reversible and can be optimized to match curved substrates, maximizing adhesive shear forces. By using chemical modification, the LCE nanowire films can be given underwater superoleophobicity, enabling oil repellency under a range of harsh conditions. This is combined with the nanowire‐induced frictional asymmetry and the reversible shape deformation to create an underwater droplet mixing robot, capable of performing chemical reactions in aqueous environments. These findings demonstrate the potential of nanowire‐augmented LCE films for advanced applications in soft robotics, adaptive adhesion, and easy chemical modification, with implications for designing responsive materials that integrate mechanical flexibility with surface functionality.  more » « less
Award ID(s):
2011876
PAR ID:
10584091
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Advanced Materials
Volume:
37
Issue:
9
ISSN:
0935-9648
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A ubiquitous structural feature in biological systems is texture in extracellular matrix that gains functions when hardened, for example, cell walls, insect scales, and diatom tests. Here, we develop patterned liquid crystal elastomer (LCE) particles by recapitulating the biophysical patterning mechanism that forms pollen grain surfaces. In pollen grains, a phase separation of extracellular material into a pattern of condensed and fluid-like phases induces undulations in the underlying elastic cell membrane to form patterns on the cell surface. In this work, LCE particles with variable surface patterns were created through a phase separation of liquid crystal oligomers (LCOs) droplet coupled to homeotropic anchoring at the droplet interface, analogously to the pollen grain wall formation. Specifically, nematically ordered polydisperse LCOs and isotropic organic solvent (dichloromethane) phase-separate at the surface of oil-in-water droplets, while, different LCO chain lengths segregate to different surface curvatures simultaneously. This phase separation, which creates a distortion in the director field, is in competition with homeotropic anchoring induced by sodium dodecyl sulfate (SDS). By tuning the polymer chemistry of the system, we are able to influence this separation process and tune the types of surface patterns in these pollen-like microparticles. Our study reveals that the energetically favorable biological mechanism can be leveraged to offer simple yet versatile approaches to synthesize microparticles for mechanosensing, tissue engineering, drug delivery, energy storage, and displays. 
    more » « less
  2. Abstract Despite recent advances in polyelectrolyte systems, designing responsive hydrogel interfaces to meet application requirements still proves challenging. Here, semicrystalline colloidal gels composed of poly(methacrylamide‐co‐methacrylic acid) are investigated in water with storage moduli in the MPa range. A combination of SEM, X‐ray scattering, and NMR reveals the evolution of the colloidal microstructure, crystallinity, and hydrogen bonding with varying monomer ratio. The gels with the finest colloidal microstructure exhibit the most dissipative rheological behavior and are selected for the study of their interfacial characteristics and underlying interactions. Microstructure stabilization and dynamics results from short‐range (attractive) hydrogen bonding and hydrophobic forces, and long‐range (repulsive) electrostatic interactions—the “SALR” pair potential. Further, the gel's surface exhibits a submicron colloidal topography that greatly determines (colloidal‐like) friction as a result of the viscoelastic deformation of the colloidal network, while electrostatic near‐surface interactions propagate in lamellar adhesion. The dynamic and reversible nature of the involved interactions introduces a stimulus responsive behavior that enables the electrotunability of adhesion and friction. This study advances the knowledge necessary to design complex hydrogel interfaces that enable spatial and dynamic control of surface properties, which is of relevance for applications in biomedical devices, soft tissue design, soft robotics, and other engineered tribosystems. 
    more » « less
  3. Strong adherence to underwater or wet surfaces for applications like tissue adhesion and underwater robotics is a significant challenge. This is especially apparent when switchable adhesion is required that demands rapid attachment, high adhesive capacity, and easy release. Nature displays a spectrum of permanent to reversible attachment from organisms ranging from the mussel to the octopus, providing inspiration for underwater adhesion design that has yet to be fully leveraged in synthetic systems. Here, we review the challenges and opportunities for creating underwater adhesives with a pathway to switchability. We discuss key material, geometric, modeling, and design tools necessary to achieve underwater adhesion similar to the adhesion control demonstrated in nature. Through these interdisciplinary efforts, we envision that bioinspired adhesives can rise to or even surpass the extraordinary capabilities found in biological systems. 
    more » « less
  4. Abstract Radiative cooling has been recently intensively explored for thermal management and enhancing energy efficiency. Yet, traditional materials with singular emissivity fall short in dynamic thermal management, highlighting the need for materials that can adjust their thermal radiation in real time. Active modulation methods, requiring external stimuli such as mechanical stretch, electric potential, or humidity change, offer adaptability but can increase energy use and complexity. Passive approaches, using materials' inherent thermal‐responsive properties, face manufacturing and scalability challenges. Here, a scalable yet effective passive approach is introduced for adaptive thermal modulation based on gold (Au) and liquid crystal elastomer (LCE) with a reversible response to environmental temperature changes. This modulator enables a “low thermal resistance” state through actuation‐induced microcracks that expose a high‐emissivity polymer substrate, and a “high thermal resistance” state by closing these microcracks and forming a high thermal resistance air gap between the modulator and the target object. The flexible design and fixed external dimensions of the Au‐LCE thermal modulator make it adaptable to various surface geometries. Furthermore, by adjusting the LCE's chemical composition, the modulator's transition temperature can be tailored, broadening its applications from enhancing building energy efficiency to improving clothing thermal comfort. 
    more » « less
  5. A vision for soft, autonomous materials entails synthesis of multiple senses in multifunctional materials where material response requires sensitivity to external stimuli. Stimuli-responsive hydrogels are of particular interest for optically induced mechanical response due to the ability to transform external stimuli into large, reversible shape change. Specifically, temperature-responsive hydrogels are broadly used and can be designed to achieve deformation through the photothermal effect as a result of surface plasmonic resonance of gold nanoparticles. Here, a multi-material stimuli-responsive hydrogel network with embedded gold nanoparticles is demonstrated in a unit cell pattern with anisotropic swelling behavior in response to visible light. Reversible, anisotropic swelling leads to bending motion that contributes to the development of soft, autonomous materials. 
    more » « less