skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: DETERMINING THE RELATIONSHIP BETWEEN THE GARLOCK FAULT AND THE EASTERN CALIFORNIA SHEAR ZONE THROUGH DETAILED DIGITAL MAPPING AND AGE CHARACTERIZATION OF FAULTED LANDFORMS, SOUTHEASTERN CALIFORNIA
Award ID(s):
2233310
PAR ID:
10584109
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
American Geophysical Union
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract AimWe reconstructed the genetic patterns and identified the main genetic breaks of several taxa across California and Baja California coast. Additionally, we evaluated the contribution of different variables to the level of structure. LocationCalifornia and Baja California coast. TaxonFish, invertebrates, algae, seagrass and mammals. MethodsWe generated a map to reconstruct the genetic patterns using genetic information (Fst index and phylogenetic clades distribution) from a literature review of population genetics publications from 2000 to 2023. For the analysis of genetic connectivity drivers, we explored the effect of different variables representing life history traits, reproductive strategies and biogeographic variables and generated five working hypotheses which were evaluated with generalized linear models (GLMs). ResultsWe identified 42 genetic breaks from 63 species across our study area. The largest number of breaks occurs from 27° N to 29° N and from 31° N to 35° N. This range includes transition zones between ecoregions such as Punta Eugenia, Baja California, Mexico and Point Conception, California, USA. We also identified Ensenada, Baja California region as a barrier to gene flow. From a transboundary perspective, we found 40 species with connectivity between California and Baja California, including 14 commercial and or recreational species. We found none of the variables explored had a clear effect on the level of genetic differentiation of the species assessed in the region. Main ConclusionGenetic breaks among different taxa do not distribute randomly across the latitudinal range from California and Baja California coastal area, rather they are mainly located in transition zones between marine ecoregions. The challenge to identify specific variables that explain general genetic patterns highlights the complexity that drives population connectivity processes in marine species. 
    more » « less
  2. Southeastern California is known for complex fault networks that accommodate strain from Pacific-North American plate convergence. The 250-km-long, left-lateral Garlock fault is integral to this system, yet its overall kinematic role within the plate boundary and relationship with faults of the Eastern California shear zone/Walker Lane belt remain poorly understood. A key area that has not been adequately studied is a 15-km stretch of the eastern Garlock fault, at its intersections with the right-lateral Brown Mountain fault and left-lateral Owl Lake fault. This segment of the fault lies within the China Lake Naval Air Weapons Station and U.S. Fort Irwin boundaries, which have restrictions on civilian access and portions of which contain unexploded ordnance, making them unsuitable and unsafe for field investigations. The purpose of this project is to use a combination of high-resolution LiDAR topographic data, remotely sensed imagery, and published geochronology data to map and establish the ages of faulted landforms along this portion of the eastern Garlock fault. The inaccessibility of this area makes it ideal for the application of remote-sensing techniques. A range of surface analysis techniques were used to differentiate and map Quaternary units in the study area. Geomorphic surface properties were determined from physiographic roughness and surface reflectance data, established from analysis of LiDAR, radar backscatter, and visual-near and short-wave infrared multispectral and hyperspectral reflectance datasets. The ages of faulted landforms were established using two approaches: (1) fault scarp and terrace riser degradation analysis and (2) a surface property-age model that links remotely sensed surface properties to new and published ages of alluvial surfaces in the region. A final goal of the study was to determine the slip rate along this segment of the Garlock fault and other faults in the map area. To accomplish this, offset landforms, such as terrace risers and channels, were analyzed in the context of the new age determinations. The results will be compared to published slip rate estimates for the region in order to better understand the Garlock fault's role within the plate boundary and how plate boundary strain is being accommodated in such an intraplate setting. 
    more » « less
  3. Abstract In the California Current Ecosystem, krill represent a key link between primary production and higher trophic level species owing to their central position in the food web and tendency to form dense aggregations. However, the strongly advective circulation associated with coastal upwelling may decouple the timing, occurrence, and persistence of krill hotspots from phytoplankton biomass and nutrient sources. Results from a coupled physical‐biological model provide insights into fundamental mechanisms controlling the phenology of krill hotspots in the California Current Ecosystem, and their sensitivity to alongshore changes in coastal upwelling intensity. The simulation indicates that dynamics controlling krill hotspot formation, intensity, and persistence on seasonal and interannual timescales are strongly heterogeneous and related to alongshore variations in upwelling‐favorable winds, primary production, and ocean currents. Furthermore, regions promoting persistent krill hotspot formation coincide with increased observed abundance of top predators, indicating that the model resolves important ecosystem complexity and function. 
    more » « less