The extent to which evolution is repeatable remains debated. Here, we study changes over time in the frequency of cryptic color-pattern morphs in 10 replicate long-term field studies of a stick insect, each spanning at least a decade (across 30 years of total data). We find predictable “up-and-down” fluctuations in stripe frequency in all populations, representing repeatable evolutionary dynamics based on standing genetic variation. A field experiment demonstrates that these fluctuations involve negative frequency-dependent natural selection (NFDS). These fluctuations rely on demographic and selective variability that pushes populations away from equilibrium, such that they can reliably move back toward it via NFDS. Last, we show that the origin of new cryptic forms is associated with multiple structural genomic variants such that which mutations arise affects evolution at larger temporal scales. Thus, evolution from existing variation is predictable and repeatable, but mutation adds complexity even for traits evolving deterministically under natural selection. 
                        more » 
                        « less   
                    This content will become publicly available on April 18, 2026
                            
                            Adaptation repeatedly uses complex structural genomic variation
                        
                    
    
            Structural elements are widespread across genomes, but their complexity and role in repeatedly driving local adaptation remain unclear. In this work, we use phased genome assemblies to show that adaptive divergence in cryptic color pattern in a stick insect is repeatedly underlain by structural variation, but not a simple chromosomal inversion. We found that color pattern in populations of stick insects on two mountains is associated with translocations that have also been inverted. These translocations differ in size and origin on each mountain, but they overlap partially and involve some of the same gene regions. Moreover, this structural variation is subject to divergent selection and arose without introgression between species. Our results show how the origin of structural variation provides a mechanism for repeated bouts of adaptation. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1844941
- PAR ID:
- 10584199
- Publisher / Repository:
- AAAS
- Date Published:
- Journal Name:
- Science
- Volume:
- 388
- Issue:
- 6744
- ISSN:
- 0036-8075
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Color variation is one of the most obvious examples of variation in nature, but biologically meaningful quantification and interpretation of variation in color and complex patterns are challenging. Many current methods for assessing variation in color patterns classify color patterns using categorical measures and provide aggregate measures that ignore spatial pattern, or both, losing potentially important aspects of color pattern.Here, we presentColormesh, a novel method for analyzing complex color patterns that offers unique capabilities. Our approach is based on unsupervised color quantification combined with geometric morphometrics to identify regions of putative spatial homology across samples, from histology sections to whole organisms.Colormeshquantifies color at individual sampling points across the whole sample.We demonstrate the utility ofColormeshusing digital images of Trinidadian guppies (Poecilia reticulata), for which the evolution of color has been frequently studied. Guppies have repeatedly evolved in response to ecological differences between up‐ and downstream locations in Trinidadian rivers, resulting in extensive parallel evolution of many phenotypes. Previous studies have, for example, compared the area and quantity of discrete color (e.g., area of orange, number of black spots) between these up‐ and downstream locations neglecting spatial placement of these areas. Using theColormeshpipeline, we show that patterns of whole‐animal color variation do not match expectations suggested by previous work.Colormeshcan be deployed to address a much wider range of questions about color pattern variation than previous approaches. Colormesh is thus especially suited for analyses that seek to identify the biologically important aspects of color pattern when there are multiple competing hypotheses or even no a priori hypotheses at all.more » « less
- 
            null (Ed.)The types of mutations affecting adaptation in the wild are only beginning to be understood. In particular, whether structural changes shape adaptation by suppressing recombination or by creating new mutations is unresolved. Here, we show that multiple linked but recombining loci underlie cryptic color morphs of Timema chumash stick insects. In a related species, these loci are found in a region of suppressed recombination, forming a supergene. However, in seven species of Timema , we found that a megabase-size “supermutation” has deleted color loci in green morphs. Moreover, we found that balancing selection likely contributes more to maintaining this mutation than does introgression. Our results show how suppressed recombination and large-scale mutation can help to package gene complexes into discrete units of diversity such as morphs, ecotypes, or species.more » « less
- 
            Long noncoding RNAs (lncRNAs) are transcribed elements increasingly recognized for their roles in regulating gene expression. Thus far, however, we have little understanding of how lncRNAs contribute to evolution and adaptation. Here, we show that a conserved lncRNA,ivory, is an important color patterning gene in the buckeye butterflyJunonia coenia.ivoryoverlaps withcortex, a locus linked to multiple cases of crypsis and mimicry in Lepidoptera. Along with a companion paper by Livraghi et al., we argue thativory, notcortex, is the color pattern gene of interest at this locus. InJ. coenia, a cluster ofcis-regulatory elements (CREs) in the first intron ofivoryare genetically associated with natural variation in seasonal color pattern plasticity, and targeted deletions of these CREs phenocopy seasonal phenotypes. Deletions of differentivoryCREs produce other distinct phenotypes as well, including loss of melanic eyespot rings, and positive and negative changes in overall wing pigmentation. We show that the color pattern transcription factors Spineless, Bric-a-brac, and Ftz-f1 bind to theivorypromoter during wing pattern development, suggesting that they directly regulateivory. This case study demonstrates howcis-regulation of a single noncoding RNA can exert diverse and nuanced effects on the evolution and development of color patterns, including modulating seasonally plastic color patterns.more » « less
- 
            Color pattern mimicry in Heliconius butterflies is a classic case study of complex trait adaptation via selection on a few large effect genes. Association studies have linked color pattern variation to a handful of noncoding regions, yet the presumptive cis-regulatory elements (CREs) that control color patterning remain unknown. Here we combine chromatin assays, DNA sequence associations, and genome editing to functionally characterize 5 cis-regulatory elements of the color pattern gene optix . We were surprised to find that the cis-regulatory architecture of optix is characterized by pleiotropy and regulatory fragility, where deletion of individual cis-regulatory elements has broad effects on both color pattern and wing vein development. Remarkably, we found orthologous cis-regulatory elements associate with wing pattern convergence of distantly related comimics, suggesting that parallel coevolution of ancestral elements facilitated pattern mimicry. Our results support a model of color pattern evolution in Heliconius where changes to ancient, multifunctional cis-regulatory elements underlie adaptive radiation.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
