We present sufficient conditions so that a conformal map between planar domains whose boundary components are Jordan curves or points has a continuous or homeomorphic extension to the closures of the domains. Our conditions involve the notions of cofat domains and C N E D CNED sets, i.e., countably negligible for extremal distances, recently introduced by the author. We use this result towards establishing conformal rigidity of a class of circle domains. A circle domain is conformally rigid if every conformal map onto another circle domain is the restriction of a Möbius transformation. We show that circle domains whose point boundary components are C N E D CNED are conformally rigid. This result is the strongest among all earlier works and provides substantial evidence towards the rigidity conjecture of He–Schramm [Invent. Math. 115 (1994), no. 2, 297–310], relating the problems of conformal rigidity and removability.
more »
« less
This content will become publicly available on March 1, 2026
Point selections from Jordan domains in Riemannian surfaces
Using fiber bundle theory and conformal mappings, we continuously select a point from the interior of Jordan domains in Riemannian surfaces. This selection can be made equivariant under isometries, and take on prescribed values such as the center of mass when the domains are convex. Analogous results for conformal transformations are obtained as well. It follows that the space of Jordan domains in surfaces of constant curvature admits an isometrically equivariant strong deformation retraction onto the space of round disks. Finally we develop a canonical procedure for selecting points from planar Jordan domains.
more »
« less
- Award ID(s):
- 2202337
- PAR ID:
- 10584388
- Publisher / Repository:
- America Mathematical Society
- Date Published:
- Journal Name:
- Transactions of the American Mathematical Society
- Volume:
- 378
- Issue:
- 1090
- ISSN:
- 0002-9947
- Page Range / eLocation ID:
- 1681 to 1696
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This paper develops a global variational approach to cutting curved surfaces so that they can be flattened into the plane with low metric distortion. Such cuts are a critical component in a variety of algorithms that seek to parameterize surfaces over flat domains, or fabricate structures from flat materials. Rather than evaluate the quality of a cut solely based on properties of the curve itself (e.g., its length or curvature), we formulate a flow that directly optimizes the distortion induced by cutting and flattening. Notably, we do not have to explicitly parameterize the surface in order to evaluate the cost of a cut, but can instead integrate a simple evolution equation defined on the cut curve itself. We arrive at this flow via a novel application of shape derivatives to the Yamabe equation from conformal geometry. We then develop an Eulerian numerical integrator on triangulated surfaces, which does not restrict cuts to mesh edges and can incorporate user-defined data such as importance or occlusion. The resulting cut curves can be used to drive distortion to arbitrarily low levels, and have a very different character from cuts obtained via purely discrete formulations. We briefly explore potential applications to computational design, as well as connections to space filling curves and the problem of uniform heat distribution.more » « less
-
Novikov, Krichever (Ed.)In [TV19a] the equivariant quantum differential equation (qDE) for a projective space was considered and a compatible system of difference qKZ equations was introduced; the space of solutions to the joint system of the qDE and qKZ equations was identified with the space of the equivariant K-theory algebra of the projective space; Stokes bases in the space of solutions were identified with exceptional bases in the equivariant K-theory algebra. This paper is a continuation of [TV19a]. We describe the relation between solutions to the joint system of the qDE and qKZ equations and the topological-enumerative solution to the qDE only, defined as a generating function of equivariant descendant Gromov-Witten invariants. The relation is in terms of the equivariant graded Chern character on the equivariant K-theory algebra, the equivariant Gamma class of the projective space, and the equivariant first Chern class of the tangent bundle of the projective space. We consider a Stokes basis, the associated exceptional basis in the equivariant K-theory algebra, and the associated Stokes matrix. We show that the Stokes matrix equals the Gram matrix of the equivariant Grothendieck-Euler-Poincaré pairing wrt to the basis, which is the left dual to the associated exceptional basis. We identify the Stokes bases in the space of solutions with explicit full exceptional collections in the equivariant derived category of coherent sheaves on the projective space, where the elements of those exceptional collections are just line bundles on the projective space and exterior powers of the tangent bundle of the projective space. These statements are equivariant analogs of results of G. Cotti, B. Dubrovin, D. Guzzetti, and S. Galkin, V. Golyshev, H. Iritani.more » « less
-
We study the asymptotic geometry of a family of conformally planar minimal surfaces with polynomial growth in the Sp(4,R)-symmetric space. We describe a homeomorphism between the “Hitchin component” of wild Sp(4,R)- Higgs bundles over CP1 with a single pole at infinity and a component of maximal surfaces with light-like polygonal boundary in H2,2. Moreover, we identify those surfaces with convex embeddings into the Grassmannian of symplectic planes of R4. We show, in addition, that our planar maximal surfaces are the local limits of equivariant maximal surfaces in H2,2 associated to Sp(4,R)-Hitchin representations along rays of holomorphic quartic differentials.more » « less
-
Abstract Conformal prediction builds marginally valid prediction intervals that cover the unknown outcome of a randomly drawn test point with a prescribed probability. However, in practice, data-driven methods are often used to identify specific test unit(s) of interest, requiring uncertainty quantification tailored to these focal units. In such cases, marginally valid conformal prediction intervals may fail to provide valid coverage for the focal unit(s) due to selection bias. This article presents a general framework for constructing a prediction set with finite-sample exact coverage, conditional on the unit being selected by a given procedure. The general form of our method accommodates arbitrary selection rules that are invariant to the permutation of the calibration units and generalizes Mondrian Conformal Prediction to multiple test units and non-equivariant classifiers. We also work out computationally efficient implementation of our framework for a number of realistic selection rules, including top-K selection, optimization-based selection, selection based on conformal p-values, and selection based on properties of preliminary conformal prediction sets. The performance of our methods is demonstrated via applications in drug discovery and health risk prediction.more » « less
An official website of the United States government
