skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, July 11 until 2:00 AM ET on Saturday, July 12 due to maintenance. We apologize for the inconvenience.


Title: Impact of Vetiver Plantation on Unsaturated Soil Behavior and Stability of Highway Slope
Due to cyclic wetting and drying, the hydro-mechanical behavior of unsaturated soil is impacted significantly. In order to assess the soil strength parameters, knowing the unsaturated behavior is important. Soil moisture content is an important parameter that can define the shear strength of the soil. Most of the highway slopes of Mississippi are built on highly expansive clay. During summer, the evaporation of moisture in the soil leads to shrinkage and the formation of desiccation cracks, while during rainfall, the soil swells due to the infiltration of water. In addition to this, the rainwater gets trapped in these cracks and creates perched conditions, leading to the increased moisture content and reduced shear strength of slope soil. The increased precipitation due to climate change is causing failure conditions on many highway slopes of Mississippi. Vetiver, a perennial grass, can be a transformative solution to reduce the highway slope failure challenges of highly plastic clay. The grass has deep and fibrous roots, which provide additional shear strength to the soil. The root can uptake a significant amount of water from the soil, keeping the moisture balance of the slope. The objective of the current study is to assess the changes in moisture contents of a highway slope in Mississippi after the Vetiver plantation. Monitoring equipment, such as rain gauges and moisture sensors, were installed to monitor the rainfall of the area and the moisture content of the soil. The data showed that the moisture content conditions were improved with the aging of the grass. The light detection and ranging (LiDAR) analysis was performed to validate the field data obtained from different sensors, and it was found that there was no significant slope movement after the Vetiver plantation. The study proves the performance of the Vetiver grass in improving the unsaturated soil behavior and stability of highway slopes built on highly expansive clay.  more » « less
Award ID(s):
2046054
PAR ID:
10584448
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
GEOSCIENCE
Date Published:
Journal Name:
Geosciences
Volume:
14
Issue:
5
ISSN:
2076-3263
Page Range / eLocation ID:
123
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. With climate change frequency of extreme disasters is increasing day by day. Excessive rainfall causes shallow landslides during such extreme events, very commonly on highway slopes containing highly plastic clay. Mississippi results in a perfect area to study the Vetiver System (VS) performance for shallow slope failure under excessive rainfall, with an average annual rainfall intensity higher than other neighboring states in the south. A highway slope in Mississippi containing high-plastic clay is explored throughout the year 2019, where time-dependent slope movement along the depth is monitored with rainfall variation. A 9.1 m slope inclinometer along with a rain gauge and an air temperature sensor have been installed at that section. The slope has experienced a shallow movement at the slope surface with a depth of 1.9 m with already observed rainfall intensity. A 6 m2 area of the slope is selected and reinforced with Vetiver grass. Nevertheless, quantitative studies of how much contribution the VS provides to slope stabilization in the field are still relatively scarce. The current paper presents a comparative study of the VS performance on the shallow slope movement in expansive soil observed from inclinometer data for the last two years. It is observed that due to Vetiver grass, the slope movement rate has reduced to 2% since plantation of Vetiver grass from that of 10% before Vetiver grass. Later, this result is further verified through a numerical investigation where Vetiver grass is simulated by changing soil properties. Numerical analysis indicates root reinforcement from the root dimensions increases slope stability up to 30%. This study outlines an approach for the study of VS in terms of contribution to slope stabilization, including field observation and numerical analysis. 
    more » « less
  2. The hydro-mechanical behavior of unsaturated soil, particularly expansive soil, is influenced significantly by cyclic wetting and drying. Understanding the soil parameters is crucial when evaluating the performance of infrastructures constructed on expansive clay. As a result of extreme rainfall events, highway slopes containing highly expansive Yazoo clay in Mississippi, U.S., become vulnerable to volume change. The phenomenon creates perched water zones within the slopes and poses a risk of slope failure. The soil-water characteristic curve (SWCC) defines the relationship between water content and soil suction, which can be obtained from different laboratory procedures. However, conventional laboratory methods have some limitations. To address this, various analytical and predictive models have been developed, but they can only offer estimates based on soil characteristics and lack seasonal variations occurring in field conditions. Studying seasonal SWCC through field measurements can help understand soil responses to changing moisture conditions. The current study utilized field data from six highway slopes in Mississippi and classified the data into different seasons: spring, summer, and fall. After obtaining van Genuchten parameters from the fitted curve for each season, the finite element method was applied to evaluate the parameters for accurate numerical analysis of infrastructures containing expansive clay. The study observed the variations in flow parameters with seasonal change that cannot be achieved when data from only one season is considered. The findings underscore the importance of field instrumentation data for developing SWCC and the significance of seasonal flow parameters in infrastructure design. 
    more » « less
  3. Beauregard, Melissa S; Budge, Aaron S (Ed.)
    Soil bioengineering using Vetiver is a widely used vegetation-based slope failure mitigation technique. Though Sunshine Vetiver grass, also known as Chrysopogon zizanioides, grows 3 m in length inside the soil in tropical and subtropical climate conditions, the depth up to which Vetiver impacts the soil property has remained undetected. This study has investigated the subsurface influence zone of Vetiver grass based on nondestructive geophysical investigations Electrical Resistivity Imaging (ERI) and Multichannel Analysis of Surface Waves (MASW) in a high plasticity expansive clay soil slope in Mississippi, United States. ERI data collected on the slope revealed that the top 2 m of the high plasticity clay soil had a higher resistivity value with Vetiver (ranging from 4 to 60 􀀺m) compared to the soil without Vetiver (ranging from 2 to 28 􀀺m). MASW investigation results at the same slope have indicated a similar increase in shear wave velocity with Vetiver up to 2 m indicating enhanced soil stiffness while compared to the section without it. The combined geophysical approach using ERI and MASW reveals that the root system of the Vetiver grass enhanced the moisture content and increased the stiffness of soil within the top layers. Though the grass roots can grow more than 3 m inside the soil, the major influence was observed within the top 2 m from the slope surface. 
    more » « less
  4. Beauregard, Melissa S; Budge, Aaron S (Ed.)
    Climate change has been playing a crucial role in altering the precipitation patterns in the southern USA. States like Mississippi, Louisiana, and Alabama have seen increased numbers of extreme events like hurricanes, storms, and heavy rainfall. Therefore, rainfall-induced landslides have been very common in recent years. In Mississippi, due to the prevalence of highly expansive clay soil, slope failure has brought about a huge financial burden for the authority. In order to create resiliency in highway embankments, regular monitoring and early detection of landslide risks are important. The objective of the current study is to evaluate the landslide behavior of highway slopes under changed climatic conditions. One highway slope near Grenada, Mississippi, was selected for the study. The slope has a history of shallow landslide. Remote sensing technology like Light Detection and Ranging (LiDAR) has been utilized to compare the topographical surfaces in different seasons. Electrical Resistivity Imaging (ERI) was performed, and seasonal variations in subsurface moisture contents were obtained from the ERI profiles. In addition, rainwater data of the site location from available open sources were collected. Perched water zones have been detected through the ERI images when there were events of extreme rainfall. A drone mounted with an advanced LiDAR scanning system has been utilized to detect any trend of slope movement in the study site. The LiDAR scan gathered dense point cloud data to construct 3D surfaces and produce topographic maps of the slope. The integration of ERI and LiDAR provides a comprehensive understanding of the climate resilience of highway slopes in the face of climate change. 
    more » « less
  5. Bioinspired slope improvements can achieve outcomes similar to traditional slope improvements for shallow slope failures, while incorporating plant material as a structural component and using a minimum of heavy equipment. Vetiver grass can mitigate the rain-induced slope instability of earthen infrastructure, such as levees, constructed using loess and clay soils. Vetiver grassroots can extend to depths greater than 3 m (10 ft), creating a new composite material with the grassroots and soil, thereby increasing shear strength to combat shallow slope failures. The objective of this study is to determine the feasibility of vetiver as a climate-resilient bioinspired slope stability improvement on a test levee constructed of loess in Vicksburg, Mississippi (MS). Vetiver was planted at 1 ft center-to-center intervals on a 9.1 m wide (30 ft) section of an approximately 12.2 m long (40 ft) downstream slope of a test levee and observed for 2.5 years. To consider the effect of extreme precipitation events, a finite element analysis was completed for a comparable clay slope using 500 year precipitation intensity–duration– frequency curves of Jackson, MS. Precipitation negatively impacts the collapsible and expansive nature of the local loess and clay, respectively. The results demonstrate that vetiver grass is a viable method to increase slope stability for earthen levees constructed with loess and clay, which are prevalent in Vicksburg and Jackson, respectively. Vetiver also holds promise as a climate resilient solution to combat raininduced shallow slope failures. 
    more » « less