Electron-neutrino charged-current interactions with xenon nuclei were modeled in the nEXO neutrinoless double- decay detector ( metric ton, 90% , 10% ) to evaluate its sensitivity to supernova neutrinos. Predictions for event rates and detectable signatures were modeled using the Model of Argon Reaction Low Energy Yields (MARLEY) event generator. We find good agreement between MARLEY’s predictions and existing theoretical calculations of the inclusive cross sections at supernova neutrino energies. The interactions modeled by MARLEY were simulated within the nEXO simulation framework and were run through an example reconstruction algorithm to determine the detector’s efficiency for reconstructing these events. The simulated data, incorporating the detector response, were used to study the ability of nEXO to reconstruct the incident electron-neutrino spectrum and these results were extended to a larger xenon detector of the same isotope enrichment. We estimate that nEXO will be able to observe electron-neutrino interactions with xenon from supernovae as far as 5–8 kpc from Earth, while the ability to reconstruct incident electron-neutrino spectrum parameters from observed interactions in nEXO is limited to closer supernovae. Published by the American Physical Society2024
more »
« less
This content will become publicly available on January 1, 2026
Secondary lepton production, propagation, and interactions
Charged current interactions of neutrinos inside the Earth can result in secondary muons and -leptons which are detectable by several existing and planned neutrino experiments through a wide variety of event topologies. Consideration of such events can improve detector performance and provide unique signatures which help with event reconstruction. In this work, we describe , a propagation tool for neutrinos and charged leptons that builds on the fast framework. considers energy losses of charged leptons, modeled both continuously for performance or stochastically for accuracy, as well as interaction models for all flavors of neutrinos, including the Glashow resonance. We demonstrate the results from including these effects on the Earth emergence probability of various charged leptons from different flavors of primary neutrino and their corresponding energy distributions. We find that the emergence probability of muons can be higher than that of taus for energies below 100 PeV, whether from a primary muon or neutrino, and that the Glashow resonance contributes to a surplus of emerging leptons near the resonant energy. Published by the American Physical Society2025
more »
« less
- Award ID(s):
- 2033500
- PAR ID:
- 10584623
- Publisher / Repository:
- Physical Review D
- Date Published:
- Journal Name:
- Physical Review D
- Volume:
- 111
- Issue:
- 2
- ISSN:
- 2470-0010
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The first search for the boson decay to at the CERN LHC is presented, based on data collected by the CMS experiment at the LHC in proton-proton collisions at a center-of-mass energy of 13 TeV and corresponding to an integrated luminosity of . The data are compatible with the predicted background. For the first time, an upper limit at the 95% confidence level of 6.9 times the standard model expectation is placed on the ratio of the to branching fractions. Limits are also placed on the six flavor-conserving four-lepton effective-field-theory operators involving two muons and two tau leptons, for the first time testing all such operators. © 2024 CERN, for the CMS Collaboration2024CERNmore » « less
-
We report a search for neutrino oscillations to sterile neutrinos under a model with three active and one sterile neutrinos ( model). This analysis uses the NOvA detectors exposed to the NuMI beam, running in neutrino mode. The data exposure, protons on target, doubles that previously analyzed by NOvA, and the analysis is the first to use charged-current interactions in conjunction with neutral-current interactions. Neutrino samples in the near and far detectors are fitted simultaneously, enabling the search to be carried out over a range extending 2 (3) orders of magnitude above (below) . NOvA finds no evidence for active-to-sterile neutrino oscillations under the model at 90% confidence level. New limits are reported in multiple regions of parameter space, excluding some regions currently allowed by IceCube at 90% confidence level. We additionally set the most stringent limits for anomalous appearance for . Published by the American Physical Society2025more » « less
-
This Letter presents the result of a sterile neutrino search using 10.7 yr of IceCube data. We analyze atmospheric muon neutrinos that traverse the Earth with energies ranging from 0.5 to 100 TeV, incorporating significant improvements in modeling neutrino flux and detector response compared to earlier studies. Notably, for the first time, we categorize data into starting and throughgoing events, distinguishing neutrino interactions with vertices inside or outside the instrumented volume, to improve energy resolution. The best-fit point for a model is found to be at and , which agrees with previous iterations of this Letter. The result is consistent with the null hypothesis of no sterile neutrinos with a value of 3.1%. Published by the American Physical Society2024more » « less
-
We present a search for an eV-scale sterile neutrino using 7.5 years of data from the IceCube DeepCore detector. The analysis uses a sample of 21,914 events with energies between 5 and 150 GeV to search for sterile neutrinos through atmospheric muon neutrino disappearance. Improvements in event selection and treatment of systematic uncertainties provide greater statistical power compared to previous DeepCore sterile neutrino searches. Our results are compatible with the absence of mixing between active and sterile neutrino states, and we place constraints on the mixing matrix elements and at 90% CL under the assumption that . These null results add to the growing tension between anomalous appearance results and constraints from disappearance searches in the sterile neutrino landscape. Published by the American Physical Society2024more » « less
An official website of the United States government
