Abstract BackgroundAggression is observed across the animal kingdom, and benefits animals in a number of ways to increase fitness and promote survival. While aggressive behaviors vary widely across populations and can evolve as an adaptation to a particular environment, the complexity of aggressive behaviors presents a challenge to studying the evolution of aggression. The Mexican tetra,Astyanax mexicanusexists as an aggressive river-dwelling surface form and multiple populations of a blind cave form, some of which exhibit reduced aggression, providing the opportunity to investigate how evolution shapes aggressive behaviors. ResultsTo define how aggressive behaviors evolve, we performed a high-resolution analysis of multiple social behaviors that occur during aggressive interactions inA. mexicanus.We found that many of the aggression-associated behaviors observed in surface-surface aggressive encounters were reduced or lost in Pachón cavefish. Interestingly, one behavior, circling, was observed more often in cavefish, suggesting evolution of a shift in the types of social behaviors exhibited by cavefish. Further, detailed analysis revealed substantive differences in aggression-related sub-behaviors in independently evolved cavefish populations, suggesting independent evolution of reduced aggression between cave populations. We found that many aggressive behaviors are still present when surface fish fight in the dark, suggesting that these reductions in aggression-associated and escape-associated behaviors in cavefish are likely independent of loss of vision in this species. Further, levels of aggression within populations were largely independent of type of opponent (cave vs. surface) or individual stress levels, measured through quantifying stress-like behaviors, suggesting these behaviors are hardwired and not reflective of population-specific changes in other cave-evolved traits. ConclusionThese results reveal that loss of aggression in cavefish evolved through the loss of multiple aggression-associated behaviors and raise the possibility that independent genetic mechanisms underlie changes in each behavior within populations and across populations. Taken together, these findings reveal the complexity of evolution of social behaviors and establishA. mexicanusas a model for investigating the evolutionary and genetic basis of aggressive behavior.
more »
« less
Evolutionary feedbacks for Drosophila aggression revealed through experimental evolution
Evolutionary feedbacks occur when evolution in one generation alters the environment experienced by subsequent generations and are an expected result of indirect genetic effects (IGEs). Hypotheses abound for the role of evolutionary feedbacks in climate change, agriculture, community dynamics, population persistence, social interactions, the genetic basis of evolution, and more, but evolutionary feedbacks have rarely been directly measured experimentally, leaving open questions about how feedbacks influence evolution. Using experimental evolution, we manipulated the social environment in which aggression was expressed and selected in fruit fly (Drosophila melanogaster) populations to allow or limit feedbacks. We selected for increased male–male aggression while allowing either positive, negative, or no feedbacks, alongside unselected controls. We show that populations undergoing negative feedbacks had the weakest evolutionary changes in aggression, while populations undergoing positive evolutionary feedbacks evolved supernormal aggression. Further, the underlying social dynamics evolved only in the negative feedbacks treatment. Our results demonstrate that IGE-mediated evolutionary feedbacks can alter the rate and pattern of behavioral evolution.
more »
« less
- Award ID(s):
- 1856577
- PAR ID:
- 10584796
- Publisher / Repository:
- Proceedings of the National Academy of Sciences
- Date Published:
- Journal Name:
- Proceedings of the National Academy of Sciences
- Volume:
- 122
- Issue:
- 17
- ISSN:
- 0027-8424
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Carere, Claudio (Ed.)Abstract Although much work has focused on non-social personality traits such as activity, exploration, and neophobia, there is a growing appreciation that social personality traits play an important role in group dynamics, disease transmission, and fitness and that social personality traits may be linked to non-social personality traits. These relationships are important because behavioral syndromes, defined here as correlated behavioral phenotypes, can constrain evolutionary responses. However, the strength and direction of relationships between social and non-social personality traits remain unclear. In this project, we examine social and non-social personality traits, and the relationships between them, in the paper wasp Polistes fuscatus. With a novel assay, we identify 5 personality traits, 2 non-social (exploration and activity), and 3 social (aggression, affiliation, and antennation) personality traits. We also find that social and non-social personality traits are phenotypically linked. We find a positive correlation between aggression and activity and a negative correlation between affiliation and activity. We also find a positive correlation between exploration and activity. Our work is an important step in understanding how phenotypic linkage between social and non-social behaviors may influence behavioral evolution. As a burgeoning model system for the study of genetic and neurobiological mechanisms of social behavior, Polistes fuscatus has the potential to add to this work by exploring the causes and consequences of individual behavioral variation.more » « less
-
Aggression and its neurochemical modulators are typically studied in males, leaving the mechanisms of female competitive aggression or dominance largely unexplored. To better understand how competitive aggression is regulated in the primate brain, we used receptor autoradiography to compare the neural distributions of oxytocin and vasopressin receptors in male and female members of female-dominant versus egalitarian/codominant species within theEulemurgenus, wherein dominance structure is a reliable proxy of aggression in both sexes. We found that oxytocin receptor binding in the central amygdala (CeA) was predicted by dominance structure, with the members of three codominant species showing more oxytocin receptor binding in this region than their peers in four female-dominant species. Thus, both sexes in female-dominantEulemurshow a pattern consistent with the regulation of aggression in male rodents. We suggest that derived pacifism inEulemurstems from selective suppression of ancestral female aggression over evolutionary time via a mechanism of increased oxytocin receptor binding in the CeA, rather than from augmented male aggression. This interpretation implies fitness costs to female aggression and/or benefits to its inhibition. These data establishEulemuras a robust model for examining neural correlates of male and female competitive aggression, potentially providing novel insights into female dominance.more » « less
-
Abstract Fluctuations in the availability of resources constrain the growth and reproduction of individuals, which subsequently affects the evolution of their respective populations. Many organisms contend with such fluctuations by entering a reversible state of reduced metabolic activity, a phenomenon known as dormancy. This pool of dormant individuals (i.e. a seed bank) does not reproduce and is expected to act as an evolutionary buffer, though it is difficult to observe this effect directly over an extended evolutionary timescale. Through genetic manipulation, we analyze the molecular evolutionary dynamics of Bacillus subtilis populations in the presence and absence of a seed bank over 700 days. The ability of these bacteria to enter a dormant state increased the accumulation of genetic diversity over time and altered the trajectory of mutations, findings that were recapitulated using simulations based on a mathematical model of evolutionary dynamics. While the ability to form a seed bank did not alter the degree of negative selection, we found that it consistently altered the direction of molecular evolution across genes. Together, these results show that the ability to form a seed bank can affect the direction and rate of molecular evolution over an extended evolutionary timescale.more » « less
-
ABSTRACT Herbicide resistance in agricultural weeds has become one of the greatest challenges for sustainable crop production. The repeated evolution of herbicide resistance provides an excellent opportunity to study the genetic and physiological basis of the resistance phenotype and the evolutionary responses to human‐mediated selection pressures.Lolium multiflorumis a ubiquitous weed that has evolved herbicide resistance repeatedly around the world in various cropping systems. We assembled and annotated a chromosome‐scale genome forL. multiflorumand elucidated the genetic architecture of paraquat resistance by performing quantitative trait locus analysis, genome‐wide association studies, genetic divergence analysis and transcriptome analyses from paraquat‐resistant and ‐susceptibleL. multiflorumplants. We identified two regions on chromosome 5 that were associated with paraquat resistance. These regions both showed evidence for positive selection among the resistant populations we sampled, but the effects of this selection on the genome differed, implying a complex evolutionary history. In addition, these regions contained candidate genes that encoded cellular transport functions, including a novel multidrug and toxin extrusion (MATE) protein and a cation transporter previously shown to interact with polyamines. Given thatL. multiflorumis a weed and a cultivated crop species, the genomic resources generated will prove valuable to a wide spectrum of the plant science community. Our work contributes to a growing body of knowledge on the underlying evolutionary and ecological dynamics of rapid adaptation to strong anthropogenic selection pressure that could help initiate efforts to improve weed management practices in the long term for a more sustainable agriculture.more » « less
An official website of the United States government
