skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on April 3, 2026

Title: Stability of the cnidarian–dinoflagellate symbiosis is primarily determined by symbiont cell-cycle arrest
The cnidarian–dinoflagellate symbiosis relies on the regulation of resident symbiont populations to maintain biomass stability; however, the relative importance of host regulatory mechanisms [cell-cycle arrest (CC), apoptosis (AP), autophagy (AU), and expulsion (EX)] during symbiosis onset and maintenance is largely unknown. Here, we inoculated a symbiont-free (aposymbiotic) model cnidarian (Exaiptasia diaphana: “Aiptasia”) with either its native symbiont Breviolum minutum or one of three non-native symbionts: Symbiodinium microadriaticum, Cladocopium goreaui, and Durusdinium trenchii. We then measured and compared host AP, host AU, symbiont EX, and symbiont cell-cycle phase for up to a year with these different symbionts and used these discrete measurements to inform comparative models of symbiont population regulation. Our models showed a general pattern, where regulation through AP and AU is reduced after onset, followed by an overshoot of the symbiont population that requires a strong regulatory response, dealt with by strong CC and increased EX. As colonization progresses into symbiosis maintenance, CC remains crucial for achieving steady-state symbiont populations, with our models estimating that CC regulates 10-fold more cells (60 to 90%) relative to the other mechanisms. Notably though, our models also revealed that D. trenchii is less tightly regulated than B. minutum, consistent with D. trenchii’s reputation as a suboptimal partner for this cnidarian. Overall, our models suggest that single regulatory mechanisms do not accurately replicate observed symbiont colonization patterns, reflecting the importance of all mechanisms working concomitantly. This ultimately sheds light on the cell biology underpinning the stability of this ecologically significant symbiosis.  more » « less
Award ID(s):
2109786
PAR ID:
10584863
Author(s) / Creator(s):
; ; ; ; ; ; ;
Editor(s):
Queller, David
Publisher / Repository:
National Academy of Sciences
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
122
Issue:
14
ISSN:
0027-8424
Page Range / eLocation ID:
e2412396122
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The ability of symbionts to recolonize their hosts after a period of dysbiosis is essential to maintain a resilient partnership. Many cnidarians rely on photosynthate provided from a large algal symbiont population. Under periods of thermal stress, symbiont densities in host cnidarians decline, and the recovery of hosts is dependent on the re-establishment of symbiosis. The cellular mechanisms that govern this process of colonization are not well-defined and require further exploration. To study this process in the symbiotic sea anemone model Exaiptasia diaphana , commonly called Aiptasia, we developed a non-invasive, efficient method of imaging that uses autofluorescence to measure the abundance of symbiont cells, which were spatially distributed into distinct cell clusters within the gastrodermis of host tentacles. We estimated cell cluster sizes to measure the occurrence of singlets, doublets, and so on up to much larger cell clusters, and characterized colonization patterns by native and non-native symbionts. Native symbiont Breviolum minutum rapidly recolonized hosts and rapidly exited under elevated temperature, with increased bleaching susceptibility for larger symbiont clusters. In contrast, populations of non-native symbionts Symbiodinium microadriaticum and Durusdinium trenchii persisted at low levels under elevated temperature. To identify mechanisms driving colonization patterns, we simulated symbiont population changes through time and determined that migration was necessary to create observed patterns (i.e., egression of symbionts from larger clusters to establish new clusters). Our results support a mechanism where symbionts repopulate hosts in a predictable cluster pattern, and provide novel evidence that colonization requires both localized proliferation and continuous migration. 
    more » « less
  2. Kormas, Konstantinos Aristomenis (Ed.)
    ABSTRACT Corals owe their ecological success to their symbiotic relationship with dinoflagellate algae (family Symbiodiniaceae). While the negative effects of heat stress on this symbiosis are well studied, how heat stress affects the onset of symbiosis and symbiont specificity is less explored. In this work, we used the model sea anemone, Exaiptasia diaphana (commonly referred to as Aiptasia), and its native symbiont, Breviolum minutum , to study the effects of heat stress on the colonization of Aiptasia by algae and the algal cell-surface glycome. Heat stress caused a decrease in the colonization of Aiptasia by algae that were not due to confounding variables such as algal motility or oxidative stress. With mass spectrometric analysis and lectin staining, a thermally induced enrichment of glycans previously found to be associated with free-living strains of algae (high-mannoside glycans) and a concomitant reduction in glycans putatively associated with symbiotic strains of algae (galactosylated glycans) were identified. Differential enrichment of specific sialic acid glycans was also identified, although their role in this symbiosis remains unclear. We also discuss the methods used to analyze the cell-surface glycome of algae, evaluate current limitations, and provide suggestions for future work in algal-coral glycobiology. Overall, this study provided insight into how stress may affect the symbiosis between cnidarians and their algal symbionts by altering the glycome of the symbiodinian partner. IMPORTANCE Coral reefs are under threat from global climate change. Their decline is mainly caused by the fragility of their symbiotic relationship with dinoflagellate algae which they rely upon for their ecological success. To better understand coral biology, researchers used the sea anemone, Aiptasia, a model system for the study of coral-algal symbiosis, and characterized how heat stress can alter the algae's ability to communicate to the coral host. This study found that heat stress caused a decline in algal colonization success and impacted the cell surface molecules of the algae such that it became more like that of nonsymbiotic species of algae. This work adds to our understanding of the molecular signals involved in coral-algal symbiosis and how it breaks down during heat stress. 
    more » « less
  3. Abstract Background Symbionts provide a variety of reproductive, nutritional, and defensive resources to their hosts, but those resources can vary depending on symbiont community composition. As genetic techniques open our eyes to the breadth of symbiont diversity within myriad microbiomes, symbiosis research has begun to consider what ecological mechanisms affect the identity and relative abundance of symbiont species and how this community structure impacts resource exchange among partners. Here, we manipulated the in hospite density and relative ratio of two species of coral endosymbionts ( Symbiodinium microadriaticum and Breviolum minutum ) and used stable isotope enrichment to trace nutrient exchange with the host, Briareum asbestinum . Results The patterns of uptake and translocation of carbon and nitrogen varied with both density and ratio of symbionts. Once a density threshold was reached, carbon acquisition decreased with increasing proportions of S. microadriaticum . In hosts dominated by B. minutum , nitrogen uptake was density independent and intermediate. Conversely, for those corals dominated by S. microadriaticum , nitrogen uptake decreased as densities increased, and as a result, these hosts had the overall highest (at low density) and lowest (at high density) nitrogen enrichment. Conclusions Our findings show that the uptake and sharing of nutrients was strongly dependent on both the density of symbionts within the host, as well as which symbiont species was dominant. Together, these complex interactive effects suggest that host regulation and the repression of in hospite symbiont competition can ultimately lead to a more productive mutualism. 
    more » « less
  4. ABSTRACT Microbes live in complex microniches within host tissues, but how symbiotic partners communicate to create such niches during development remains largely unexplored. Using confocal microscopy and symbiont genetics, we characterized the shaping of host microenvironments during light organ colonization of the squid Euprymna scolopes by the bacterium Vibrio fischeri . During embryogenesis, three pairs of invaginations form sequentially on the organ’s surface, producing pores that lead to interior compressed tubules at different stages of development. After hatching, these areas expand, allowing V. fischeri cells to enter and migrate ∼120 μm through three anatomically distinct regions before reaching blind-ended crypt spaces. A dynamic gatekeeper, or bottleneck, connects these crypts with the migration path. Once V. fischeri cells have entered the crypts, the bottlenecks narrow, and colonization by the symbiont population becomes spatially restricted. The actual timing of constriction and restriction varies with crypt maturity and with different V. fischeri strains. Subsequently, starting with the first dawn following colonization, the bottleneck controls a lifelong cycle of dawn-triggered expulsions of most of the symbionts into the environment and a subsequent regrowth in the crypts. Unlike other developmental phenotypes, bottleneck constriction is not induced by known microbe-associated molecular patterns (MAMPs) or by V. fischeri - produced bioluminescence, but it does require metabolically active symbionts. Further, while symbionts in the most mature crypts have a higher proportion of live cells and a greater likelihood of expulsion at dawn, they have a lower resistance to antibiotics. The overall dynamics of these distinct microenvironments reflect the complexity of the host-symbiont dialogue. IMPORTANCE The complexity, inaccessibility, and time scales of initial colonization of most animal microbiomes present challenges for the characterization of how the bacterial symbionts influence the form and function of tissues in the minutes to hours following the initial interaction of the partners. Here, we use the naturally occurring binary squid-vibrio association to explore this phenomenon. Imaging of the spatiotemporal landscape of this symbiosis during its onset provides a window into the impact of differences in both host-tissue maturation and symbiont strain phenotypes on the establishment of a dynamically stable symbiotic system. These data provide evidence that the symbionts shape the host-tissue landscape and that tissue maturation impacts the influence of strain-level differences on the daily rhythms of the symbiosis, the competitiveness for colonization, and antibiotic sensitivity. 
    more » « less
  5. Abstract Increasing ocean temperatures are causing dysbiosis between coral hosts and their symbionts. Previous work suggests that coral host gene expression responds more strongly to environmental stress compared to their intracellular symbionts; however, the causes and consequences of this phenomenon remain untested. We hypothesized that symbionts are less responsive because hosts modulate symbiont environments to buffer stress. To test this hypothesis, we leveraged the facultative symbiosis between the scleractinian coralOculina arbusculaand its symbiontBreviolum psygmophilumto characterize gene expression responses of both symbiotic partners in and ex hospite under thermal challenges. To characterize host and in hospite symbiont responses, symbiotic and aposymbioticO. arbusculawere exposed to three treatments: (1) control (18°C), (2) heat (32°C), and (3) cold (6°C). This experiment was replicated withB. psygmophilumcultured fromO. arbusculato characterize ex hospite symbiont responses. Both thermal challenges elicited classic environmental stress responses (ESRs) inO. arbuscularegardless of symbiotic state, with hosts responding more strongly to cold challenge. Hosts also exhibited stronger responses than in hospite symbionts. In and ex hospiteB. psygmophilumboth down‐regulated gene ontology pathways associated with photosynthesis under thermal challenge; however, ex hospite symbionts exhibited greater gene expression plasticity and differential expression of genes associated with ESRs. Taken together, these findings suggest thatO. arbusculahosts may buffer environments ofB. psygmophilumsymbionts; however, we outline the future work needed to confirm this hypothesis. 
    more » « less