Taxonomic diversity of benthic marine invertebrate shelf species declines at present by nearly an order of magnitude from the tropics to the poles in each hemisphere along the latitudinal diversity gradient (LDG), most steeply along the western Pacific where shallow-sea diversity is at its tropical maximum. In the Bivalvia, a model system for macroevolution and macroecology, this taxonomic trend is accompanied by a decline in the number of functional groups and an increase in the evenness of taxa distributed among those groups, with maximum functional evenness (FE) in polar waters of both hemispheres. In contrast, analyses of this model system across the two era-defining events of the Phanerozoic, the Permian–Triassic and Cretaceous–Paleogene mass extinctions, show only minor declines in functional richness despite high extinction intensities, resulting in a rise in FE owing to the persistence of functional groups. We hypothesize that the spatial decline of taxonomic diversity and increase in FE along the present-day LDG primarily reflect diversity-dependent factors, whereas retention of almost all functional groups through the two mass extinctions suggests the operation of diversity-independent factors. Comparative analyses of different aspects of biodiversity thus reveal strongly contrasting biological consequences of similarly severe declines in taxonomic diversity and can help predict the consequences for functional diversity among different drivers of past, present, and future biodiversity loss.
more »
« less
This content will become publicly available on February 1, 2026
Mass extinctions and their rebounds: a macroevolutionary framework
Abstract Mass extinctions are natural experiments on the short- and long-term consequences of pushing biotas past breaking points, often with lasting effects on the structure and function of biodiversity. General properties of mass extinctions—exceptionally severe, taxonomically broad, global losses of taxa—are starting to come into focus through comparisons among dimensions of biodiversity, including morphological, functional, and phylogenetic diversity. Notably, functional diversity tends to persist despite severe losses of taxonomic diversity, whereas taxic and morphological losses may or may not be coupled. One of the biggest challenges in synthesizing and extracting general consequences of these events has been that they are often driven by multiple, interacting pressures, and the taxa and their traits vary among events, making it difficult to link single stressors to specific traits. Ongoing improvements in the taxonomic and stratigraphic resolution of these events for multiple clades will sharpen tests for selectivity and help to isolate hitchhiking effects, whereby organismal traits are carried by differential survival or extinction of taxa owing to other organismal or higher-level attributes, such as geographic-range size. Direct comparative analyses across multiple extinction events will also clarify the impacts of particular drivers on taxa, functional traits, and morphologies. It is not just the extinction filter that deserves attention, as the longer-term impact of extinctions derives in part from their ensuing rebounds. More work is needed to uncover the biotic and abiotic circumstances that spur some clades into re-diversification while relegating others to marginal shares of biodiversity. Combined insights from mass extinction filters and their rebounds bring a macroevolutionary view to approaching the biodiversity crisis in the Anthropocene, helping to pinpoint the clades, functional groups, and morphologies most vulnerable to extinction and failed rebounds.
more »
« less
- Award ID(s):
- 2049627
- PAR ID:
- 10584965
- Publisher / Repository:
- Paleobiology - Cambridge University Press
- Date Published:
- Journal Name:
- Paleobiology
- Volume:
- 51
- Issue:
- 1
- ISSN:
- 0094-8373
- Page Range / eLocation ID:
- 83 to 96
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Defaunation and species introductions alter long-term functional trait diversity in insular reptilesBiodiversity loss poses a major threat to ecosystem function, which has already been severely impacted by global late-Quaternary defaunation. The loss of mammalian megafauna from many insular systems has rendered reptiles into key modulators of many ecosystem services, such as seed dispersal and pollination. How late-Quaternary extinction events impacted reptile functional diversity remains unclear but can provide critical guidance on traits that render reptiles vulnerable to extinction, as well as anthropogenic, environmental, and evolutionary histories that may promote stability and resilience. This study reconstructs the trajectory of functional diversity change in the Caribbean reptile fauna, a speciose biota distributed over a diverse set of islands with heterogeneous histories of human habitation and exploitation. Human-induced Quaternary extinctions have completely removed key functional entities (FEs)—groupings of species with similar traits that are expected to provide similar ecosystem services—from the region, but functional redundancy on large islands served as a buffer to major functional diversity loss. Small islands, on the other hand, lose up to 67% of their native FEs with only a few exceptions, underscoring the importance of a place’s anthropogenic history in shaping present-day biodiversity. While functional redundancy has shielded ecosystems from significant functional diversity loss in the past, it is being eroded and not replenished by species introductions, leaving many native FEs and the communities that they support vulnerable to extinction and functional collapse. This research provides critical data on long-term functional diversity loss for a taxonomic group whose contributions to ecosystem function are understudied and undervalued.more » « less
-
Abstract Many of the most dramatic patterns in biological diversity are created by “Perfect Storms” —rare combinations of mutually reinforcing factors that push origination, extinction, or diversity accommodation to extremes. These patterns include the strongest diversification events (e.g. the Cambrian Explosion of animal body plans), the proliferation of hyperdiverse clades (e.g. insects, angiosperms), the richest biodiversity hotspots (e.g. the New World Tropical Montane regions and the ocean's greatest diversity pump, the tropical West Pacific), and the most severe extinction events (e.g. the Big Five mass extinctions of the Phanerozoic). Human impacts on the modern biota are also a Perfect Storm, and both mitigation and restoration strategies should be framed accordingly, drawing on biodiversity's responses to multi-driver processes in the geologic past. This approach necessarily weighs contributing factors, identifying their often non-linear and time-dependent interactions, instead of searching for unitary causes.more » « less
-
Abstract Approaches to macroevolution require integration of its two fundamental components, within a hierarchical framework. Following a companion paper on the origin of variation, I here discuss sorting within an evolutionary hierarchy. Species sorting—sometimes termed species selection in the broad sense, meaning differential origination and extinction owing to intrinsic biological properties—can be split into strict-sense species selection, in which rate differentials are governed by emergent, species-level traits such as geographic range size, and effect macroevolution, in which rates are governed by organism-level traits such as body size; both processes can create hitchhiking effects, indirectly causing the proliferation or decline of other traits. Several methods can operationalize the concept of emergence, so that rigorous separation of these processes is increasingly feasible. A macroevolutionary tradeoff, underlain by the intrinsic traits that influence evolutionary dynamics, causes speciation and extinction rates to covary in many clades, resulting in evolutionary volatility of some clades and more subdued behavior of others; the few clades that break the tradeoff can achieve especially prolific diversification. In addition to intrinsic biological traits at multiple levels, extrinsic events can drive the waxing and waning of clades, and the interaction of traits and events are difficult but important to disentangle. Evolutionary trends can arise in many ways, and at any hierarchical level; descriptive models can be fitted to clade trajectories in phenotypic or functional spaces, but they may not be diagnostic regarding processes, and close attention must be paid to both leading and trailingedges of apparent trends. Biotic interactions can have negative or positive effects on taxonomic diversity within a clade, but cannot be readily extrapolated from the nature of such interactions at the organismic level. The relationships among macroevolutionary currencies through time (taxonomic richness, morphologic disparity, functional variety) are crucial for understanding the nature of evolutionary diversification. A novel approach to diversity-disparity analysis shows that taxonomic diversifications can lag behind, occur in concert with, or precede, increases in disparity. Some overarching issues relating to both the origin and sorting of clades and phenotypes include the macroevolutionary role of mass extinctions, the potential differences between plant and animal macroevolution, whether macroevolutionary processes have changed through geologic time, and the growing human impact on present-day macroevolution. Many challenges remain, but progress is being made on two of the key ones: (a) the integration of variation-generating mechanisms and the multilevel sorting processes that act on that variation, and (b) the integration of paleontological and neontological approaches to historical biology.more » « less
-
Abstract Ecological observations and paleontological data show that communities of organisms recur in space and time. Various observations suggest that communities largely disappear in extinction events and appear during radiations. This hypothesis, however, has not been tested on a large scale due to a lack of methods for analyzing fossil data, identifying communities, and quantifying their turnover. We demonstrate an approach for quantifying turnover of communities over the Phanerozoic Eon. Using network analysis of fossil occurrence data, we provide the first estimates of appearance and disappearance rates for marine animal paleocommunities in the 100 stages of the Phanerozoic record. Our analysis of 124,605 fossil collections (representing 25,749 living and extinct marine animal genera) shows that paleocommunity disappearance and appearance rates are generally highest in mass extinctions and recovery intervals, respectively, with rates three times greater than background levels. Although taxonomic change is, in general, a fair predictor of ecologic reorganization, the variance is high, and ecologic and taxonomic changes were episodically decoupled at times in the past. Extinction rate, therefore, is an imperfect proxy for ecologic change. The paleocommunity turnover rates suggest that efforts to assess the ecological consequences of the present-day biodiversity crisis should focus on the selectivity of extinctions and changes in the prevalence of biological interactions.more » « less