ABSTRACT Adaptive radiations are rich laboratories for exploring, testing, and understanding key theories in evolution and ecology because they offer spectacular displays of speciation and ecological adaptation. Particular challenges to the study of adaptive radiation include high levels of species richness, rapid speciation, and gene flow between species. Over the last decade, high‐throughput sequencing technologies and access to population genomic data have lessened these challenges by enabling the analysis of samples from many individual organisms at whole‐genome scales. Here we review how population genomic data have facilitated our knowledge of adaptive radiation in five key areas: (1) phylogenetics, (2) hybridization, (3) timing and rates of diversification, (4) the genomic basis of trait evolution, and (5) the role of genome structure in divergence. We review current knowledge in each area, highlight outstanding questions, and focus on methods that facilitate detection of complex patterns in the divergence and demography of populations through time. It is clear that population genomic data are revolutionising the ability to reconstruct evolutionary history in rapidly diversifying clades. Additionally, studies are increasingly emphasising the central role of gene flow, re‐use of standing genetic variation during adaptation, and structural genomic elements as facilitators of the speciation process in adaptive radiations. We highlight hybridization—and the hypothesized processes by which it shapes diversification—and questions seeking to bridge the divide between microevolutionary and macroevolutionary processes as rich areas for future study. Overall, access to population genomic data has facilitated an exciting era in adaptive radiation research, with implications for deeper understanding of fundamental evolutionary processes across the tree of life.
more »
« less
This content will become publicly available on March 1, 2026
Key Adaptive Trait Promotes Contrasting Modes of Diversification in a Bivalve Clade
Abstract Siphons in bivalves have been postulated as a key adaptive trait, enabling modes of life inaccessible to asiphonate lineages, that afford better protection from predation and dislodgement, thereby enhancing their taxonomic diversification. To test the impact of siphons on diversity, we compared two bivalve clades with similar shell forms and life positions that differ in the presence/absence of this supposed key trait: the asiphonate Archiheterodonta (origin ~ 420 Myr ago) and the siphonate Veneridae (origin ~ 170 Myr ago). We measured three characters relevant to burrowing (shell length, cross-sectional area, and proportional shell volume) in these two groups, finding that siphonate venerids occupy more modes of life than archiheterodonts because they can live at a greater range of distances from the sediment–water interface, with the thinnest shells occurring in the deepest-burrowing groups. Asiphonate taxa have thicker shells, perhaps as a compensatory adaptation in response to the potential for exposure and attack because they are limited to shallower depths of burial. The lack of siphons may have impeded morphologic and taxonomic diversification in archiheterodonts. In contrast, siphons are consistent with a key adaptive trait in the Veneridae, evidently enabling taxonomic diversification into a greater range of morphologies.
more »
« less
- Award ID(s):
- 2049627
- PAR ID:
- 10584967
- Publisher / Repository:
- Springer
- Date Published:
- Journal Name:
- Evolutionary Biology
- Volume:
- 52
- Issue:
- 1
- ISSN:
- 0071-3260
- Page Range / eLocation ID:
- 26 to 39
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Murphy, William (Ed.)Abstract Organisms across the tree of life have complex life cycles that include both sexual and asexual reproduction or that are obligately asexual. These organisms include ecologically dominant species that structure many terrestrial and marine ecosystems, as well as many pathogens, pests, and invasive species. We must consider both the evolution and maintenance of these various reproductive modes and how these modes shape the genetic diversity, adaptive evolution, and ability to persist in the species that exhibit them. Thus, having a common framework is a key aspect of understanding the biodiversity that shapes our planet. In the 2019 AGA President’s Symposium, Sex and Asex: The genetics of complex life cycles, researchers investigating a wide range of taxonomic models and using a variety of modes of investigation coalesced around a common theme—understanding not only how such complex life cycles may evolve, but how they are shaped by the evolutionary and ecological forces around them. In this introduction to the Special Issue from the symposium, we give an overview of some of the key ideas and areas of investigation (a common clonal lexicon, we might say) and introduce the breadth of work submitted by symposium participants.more » « less
-
Both the Cambrian explosion, more than half a billion years ago, and its Ordovician aftermath some 35 Myr later, are often framed as episodes of widespread ecological opportunity, but not all clades originating during this interval showed prolific rises in morphological or functional disparity. In a direct analysis of functional disparity, instead of the more commonly used proxy of morphological disparity, we find that ecological functions of Class Bivalvia arose concordantly with and even lagged behind taxonomic diversification, rather than the early-burst pattern expected for clades originating in supposedly open ecological landscapes. Unlike several other clades originating in the Cambrian explosion, the bivalves' belated acquisition of key anatomical novelties imposed a macroevolutionary lag, and even when those novelties evolved in the Early Ordovician, functional disparity never surpassed taxonomic diversity. Beyond this early period of animal evolution, the founding and subsequent diversification of new major clades and their functions might be expected to follow the pattern of the early bivalves—one where interactions between highly dynamic environmental and biotic landscapes and evolutionary contingencies need not promote prolific functional innovation.more » « less
-
Abstract Ammonites have disparate adult morphologies indicative of diverse ecological niches, but ammonite hatchlings are small (~1 mm diameter), which raises questions about the similarity of egg incubation and hatchling life mode in ammonites. Modern Nautilus is sometimes used as a model organism for understanding ammonites, but despite their outward similarities, the groups are only distantly related. Trends in ammonite diversity and extinction vulnerability in the fossil record contrast starkly with those of nautilids, and embryonic shells from Late Cretaceous ammonites are two orders of magnitude smaller than nautilid embryonic shells. To investigate possible environmental changes experienced by ammonite hatchlings, we used secondary ion mass spectrometry to analyze the oxygen and carbon isotope composition of the embryonic shells and early postembryonic whorls of five juveniles of Hoploscaphites comprimus obtained from a single concretion in the Fox Hills Formation of South Dakota. Co-occurring bivalves and diagenetic calcite were also analyzed to provide a benthic baseline for comparison. The oxygen isotope ratios of embryonic shells are more like those of benthic bivalves, suggesting that ammonite eggs were laid on the bottom. Ammonite shell immediately after hatching has more negative δ 18 O, suggesting movement to more shallow water that is potentially warmer and/or fresher. After approximately one whorl of postembryonic growth, the values of δ 18 O become more positive in three of the five individuals, suggesting that these animals transitioned to a more demersal mode of life. Two other individuals transition to even lower δ 18 O values that could suggest movement to nearshore brackish water. These data suggest that ammonites, like many modern coleoids, may have spawned at different times of the year. Because scaphites were one of the short-term Cretaceous–Paleogene extinction survivors, it is possible that this characteristic allowed them to develop a broader geographic range and, consequently, a greater resistance to extinction.more » « less
-
Abstract Ecophenotypic variation in populations is driven by differences in environmental variables. In marine environments, ecophenotypic variation may be caused by differences in hydrodynamic conditions, substrate type, water depth, temperature, salinity, oxygen concentration, and habitat heterogeneity, among others. Instances of ecophenotypic variation in modern and fossil settings are common, but little is known about the influences of time averaging and spatial averaging on their preservation. Here we examine the shell morphology of two adjacent populations, both live collected and death assemblages, of the infaunal, suspension-feeding, intertidal bivalve Leukoma staminea from the well-studied Argyle Creek and Argyle Lagoon locations on San Juan Island, Washington. Individuals in the low-energy lagoon are free to burrow in the fine-grained substrate, while clams in the high-energy creek are precluded from burrowing in the rocky channel. Our results demonstrate variation in size and shape between the adjacent habitats. Lagoon clams are larger, more disk-shaped, and have relatively larger siphons than their creek counterparts, which are smaller, more spherical in shape, and have a relatively shallower pallial sinus. This ecophenotypy is preserved among death assemblages, although with generally greater variation due to time averaging and shell transport. Our interpretation is that ecophenotypic variation, in this case, is induced by differing hydrodynamic regimes and substrate types, cumulatively resulting in physiological trade-offs diverting resources from feeding and respiration to stability and shell strength, all of which have the potential to be preserved in the fossil record.more » « less