skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on February 1, 2026

Title: Long-lived partial melt beneath Cascade Range volcanoes
Quantitative estimates of magma storage are fundamental to evaluating volcanic dynamics and hazards. Yet our understanding of subvolcanic magmatic plumbing systems and their variability remains limited. There is ongoing debate regarding the ephemerality of shallow magma storage and its volume relative to eruptive output, and so whether an upper-crustal magma body could be a sign of imminent eruption. Here we present seismic imaging of subvolcanic magmatic systems along the Cascade Range arc from systematically modelling the three-dimensional scattered wavefield of teleseismic body waves. This reveals compelling evidence of low-seismic-velocity bodies indicative of partial melt between 5 and 15 km depth beneath most Cascade Range volcanoes. The magma reservoirs beneath these volcanoes vary in depth, size and complexity, but upper-crustal magma bodies are widespread, irrespective of the eruptive flux or time since the last eruption of the associated volcano. This indicates that large volumes of melts can persist at shallow depth throughout eruption cycles beneath large volcanoes.  more » « less
Award ID(s):
2313452
PAR ID:
10585046
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Nature Geosciences
Date Published:
Journal Name:
Nature Geoscience
Volume:
18
Issue:
2
ISSN:
1752-0894
Page Range / eLocation ID:
184 to 190
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Despite multidisciplinary evidence for crustal magma accumulation below Santorini volcano, Greece, the structure and melt content of the shallow magmatic system remain poorly constrained. We use three-dimensional (3-D) velocity models from tomographic inversions of active-source seismic P-wave travel times to identify a pronounced low-velocity anomaly (–21%) from 2.8 km to 5 km depth localized below the northern caldera basin. This anomaly is consistent with depth estimates of pre-eruptive storage and a recent inflation episode, supporting the interpretation of a shallow magma body that causes seismic attenuation and ray bending. A suite of synthetic tests shows that the geometry is well recovered while a range of melt contents (4%–13% to fully molten) are allowable. A thin mush region (2%–7% to 3%–10% melt) extends from the main magma body toward the northeast, observed as low velocities confined by tectono-magmatic lineaments. This anomaly terminates northwest of Kolumbo; little to no melt underlies the seamount from 3 to 5 km depth. These structural constraints suggest that crustal extension and edifice loads control the geometry of magma accumulation and emphasize that the shallow crust remains conducive to melt storage shortly after a caldera-forming eruption. 
    more » « less
  2. Abstract Determining the spatial relations between volcanic edifices and their underlying magma storage zones is fundamental for characterizing long‐term evolution and short‐term unrest. We compile centroid locations of upper crustal magma reservoirs at 56 arc volcanoes inferred from seismic, magnetotelluric, and geodetic studies. We show that magma reservoirs are often horizontally offset from their associated volcanic edifices by multiple kilometers, and the degree of offset broadly scales with reservoir depth. Approximately 20% of inferred magma reservoir centroids occur outside of the overlying volcano's mean radius. Furthermore, reservoir offset is inversely correlated with edifice size. Taking edifice volume as a proxy for long‐term magmatic flux, we suggest that high flux or prolonged magmatism leads to more centralized magma storage beneath arc volcanoes by overprinting upper crustal heterogeneities that would otherwise affect magma ascent. Edifice volumes therefore reflect the spatial distribution of underlying magma storage, which could help guide monitoring strategies at volcanoes. 
    more » « less
  3. Santorini volcano in the South Aegean Volcanic Arc has a detailed history of ongoing volcanic and seismic activity, making it a prime location for studying magma storage and transport at arc volcanoes. The shallow magmatic system (<5 km depth) is well constrained by geophysical studies, but the deeper crustal structure is not. Located 15 km NE of Santorini, the Kolumbo seamount is also an active edifice, with consistently more seismicity and hydrothermal venting than Santorini. Geochemical studies indicate that Santorini and Kolumbo are fed by separate mantle and crustal magma sources, but prior seismic studies suggest otherwise (Dimitriadis et al, 2010; McVey et al, 2020). This study addresses the nature of lower-crustal magma structure beneath arc volcanoes and whether evolved volcanoes and nearby vents are connected through their plumbing. Tomographic inversion of P-wave Moho reflection (PmP) and turning P-wave (Pg) traveltimes is used to create 3-D models of Moho depth and P-wave velocity (Vp) down to depths of ~25 km. The PROTEUS experiment provides an exceptionally dense and large aperture traveltime dataset from an amphibious array of ~150 seismometers and ~14,000 active marine sources. The data are ~33,000 manually picked PmP arrivals and ~256,000 Pg arrivals from existing studies. Results show a low Vp anomaly extending from the Moho to the surface. This anomaly starts at the base of the crust under the NW Santorini caldera and extends up to the east. It is most pronounced at 10-15 km depth, where it is offset from both Santorini and Kolumbo. Limited resolution prevents imaging of a connection between this mid-crustal anomaly and the known shallow magma storage region under the Santorini caldera. A high-velocity core beneath Santorini is not found, a feature interpreted at other volcanoes as a cooled intrusive complex. Because no additional low Vp anomalies are found in the lower crust, we infer that a common mantle source and mid-crustal plumbing system is actively feeding both Santorini and Kolumbo. The spatial offset and elongated nature of magma storage implies a complex relationship between evolving magmatic structures and tectonics. 
    more » « less
  4. null (Ed.)
    Abstract Increased resolution of data constraining topography and crustal structures provides new quantitative ways to assess province-scale surface-subsurface connections beneath volcanoes. We used a database of mapped vents to extract edifices with known epoch ages from digital elevation models (DEMs) in the Cascades arc (western North America), deriving volumes that likely represent ∼50% of total Quaternary eruptive output. Edifice volumes and spatial vent density correlate with diverse geophysical data that fingerprint magmatic influence in the upper crust. Variations in subsurface structures consistent with volcanism are common beneath Quaternary vents throughout the arc, but they are more strongly associated with younger vents. Geophysical magmatic signatures increase in the central and southern Cascade Range (Cascades), where eruptive output is largest and vents are closely spaced. Vents and correlated crustal structures, as well as temporal transitions in the degree of spatially localized versus distributed eruptions, define centers with lateral extents of ∼100 km throughout the arc, suggesting a time-evolving spatial focusing of magma ascent. 
    more » « less
  5. Abstract The iconic volcanoes of the Cascade arc stretch from Lassen Volcanic Center in northern California, through Oregon and Washington, to the Garibaldi Volcanic Belt in British Columbia. Recent studies have reviewed differences in the distribution and eruptive volumes of vents, as well as variations in geochemical compositions and heat flux along strike (amongst other characteristics). We investigate whether these along‐arc trends manifest as variations in magma storage conditions. We compile available constraints on magma storage depths from InSAR, geodetics, seismic inversions, and magnetotellurics for each major edifice and compare these to melt inclusion saturation pressures, pressures calculated using mineral‐only barometers, and constraints from experimental petrology. The availability of magma storage depth estimates varies greatly along the arc, with abundant geochemical and geophysical data available for some systems (e.g., Lassen Volcanic Center, Mount St. Helens) and very limited data available for other volcanoes, including many which are classified as “very high threat” by the USGS (e.g., Glacier Peak, Mount Baker, Mount Hood, Three Sisters). Acknowledging the limitations of data availability and the large uncertainties associated with certain methods, available data are indicative of magma storage within the upper 15 km of the crust (∼2 ± 2 kbar) beneath the main edifices. These findings are consistent with previous work recognizing barometric estimates cluster within the upper crust in many arcs worldwide. There are no clear offsets in magma storage between arc segments that are in extension, transtension or compression, although substantially more petrological work is needed for fine scale evaluation of storage pressures. 
    more » « less