skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on March 1, 2026

Title: Status of truffle science and cultivation in North America
Abstract BackgroundTruffles are subterranean fungal fruiting bodies that are highly prized for their culinary value. Cultivation of truffles was pioneered in Europe and has been successfully adapted in temperate regions throughout the globe. Truffle orchards have been established in North America since the 1980s, and while some are productive, there are still many challenges that must be overcome to develop a viable North American truffle industry. These challenges include extended delays between establishment and production, comparatively low yields, high spatial heterogeneity in yield distribution, and orchard contamination with lower-value truffle fungi. AimHere we review known requirements for truffle production including necessary environmental conditions, reproductive biology, and effective agronomic practices. ContentWe consider the potential limitations of importing exotic host-fungal associations into North America where there is already a rich community of competing ectomycorrhizal fungi, host pests and pathogens. We also describe the status of the North American truffle industry with respect to market potential, including production costs, pricing, and biological and socioeconomic risk factors. A critical aspect of modern trufficulture involves monitoring with genetic tools that supply information on identity, abundance and distribution of fungal symbionts, abundance of competitive and contaminating fungi, and insight into the interactions between fungal mating types that are fundamental to the formation of truffle primordia. ImplicationsCultivation of the ectomycorrhizal truffle symbiosis requires application of pragmatic agronomic practices, adopting rigorous quality control standards, and an understanding of fungal biology, microbiology, and molecular biology. Consequently, significant interdisciplinary collaboration is crucial to further develop the North American truffle industry.  more » « less
Award ID(s):
1946445
PAR ID:
10585081
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; « less
Publisher / Repository:
Plant and Soil
Date Published:
Journal Name:
Plant and Soil
Volume:
508
Issue:
1-2
ISSN:
0032-079X
Page Range / eLocation ID:
625 to 661
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Truffle growers devote great efforts to improve black truffle productivity, developing agronomic practices such as ‘truffle nests’ (peat amendments that are supplemented with truffle spore inoculum). It has been hypothesized that improved fruiting associated with nests is linked to stimulation of truffle mycelia previously established in soil or to changes generated in soil fungal community. To assess this, we used real-time PCR to quantify black truffle extraradical mycelium during 2 years after nests installation. We also characterized the fungal community via high-throughput amplicon sequencing of the ITS region of rRNA genes. We found that neither the abundance of truffle mycelium in nests nor in the soil—nest interphase was higher than in the bulk soil, which indicates that nests do not improve mycelial growth. The fungal community in nests showed lower richness and Shannon index and was compositionally different from that of soil, which suggests that nests may act as an open niche for fungal colonization that facilitates truffle fruiting. The ectomycorrhizal fungal community showed lower richness in nests. However, no negative relationships between amount of truffle mycelium and reads of other ectomycorrhizal fungi were found, thus countering the hypothesis that ectomycorrhizal competition plays a role in the nest effect. 
    more » « less
  2. Cistaceae are shrubs, subshrubs and herbs that often occur in stressful, fire-prone or disturbed environments and form ectomycorrhizal (ECM) associations with symbiotic fungi. Although some Cistaceae are long-lived shrubs that grow to significant size, others are herbaceous annuals or short-lived plants. Thus, Cistaceae are atypical ECM hosts that are fundamentally different in their biology from trees that are the more typically studied ECM hosts. The Mediterranean region is the center of diversity for Cistaceae and the ectomycorrhizal fungi associated with Cistaceae hosts have primarily been studied in Europe, North Africa, and the Middle East. Mediterranean Cistaceae often host diverse communities of ECM fungi, but they also act as hosts for some ECM fungi that putatively show host-specificity or strong host preference for Cistaceae (including species of Delastria, Hebeloma, Terfezia, and Tirmania). The ECM associations of Cistaceae in North America, however, remain highly understudied. Here we use fungal DNA metabarcoding to document the ectomycorrhizal fungal communities associated with Crocanthemum and Lechea (Cistaceae) in open, fire-prone sandhill habitats in north Florida. At each site we also sampled nearby Pinus to determine whether small, herbaceous Cistaceae have specialized ECM fungi or whether they share their ECM fungal community with nearby pines. The ECM communities of Florida Cistaceae are dominated by Cenococcum (Ascomycota) and Russula (Basidiomycota) species but were also significantly associated with Delastria, an understudied genus of mostly truffle-like Pezizales (Ascomycota). Although many Cistaceae ECM fungi were shared with neighboring pines, the ECM communities with Cistaceae were nonetheless significantly different than those of pines. 
    more » « less
  3. Truffle fungi are esteemed for their aromatic qualities and are among the most widely cultivated edible ectomycorrhizal fungi. Here we document a successful method for establishing Tuber lyonii , the pecan truffle, on pecan ( Carya illinoinensis ) seedlings in a field setting. We assessed the impacts of soil fumigation and varying concentrations of truffle spore inoculum on the ectomycorrhizal fungal and the complete fungal communities as well as the colonization of T. lyonii on pecan roots at three nurseries in Georgia, United States. To identify fungal communities on pecan seedlings, we performed high-throughput amplicon sequencing of the fungal ITS1 rDNA region. Our 5-year long field experiment demonstrates that fumigation and inoculation together resulted in the highest persistence of T. lyonii on pecan roots. While fungal OTU numbers fluctuated over the years of our experiments, there was no statistical support to demonstrate diversification of communities when Shannon diversity metrics were used. However, we did find that older seedlings were less likely to be dominated by T. lyonii compared to younger ones, suggesting successional changes in the fungal community over time. This suggests that transplanting inoculated seedlings after 2 or 3 years post-inoculation is optimal for future truffle propagation efforts. Our results demonstrate that T. lyonii can be established in situ with methods that are compatible with current pecan nursery industry practices and that fungal communities on pecan seedlings vary depending on the experimental treatments used during planting. While the pecan truffle is not yet widely cultivated, our results provide insights for future large-scale cultivation of this and perhaps other Tuber species. 
    more » « less
  4. Abstract AimEfforts to predict the responses of soil fungal communities to climate change are hindered by limited information on how fungal niches are distributed across environmental hyperspace. We predict the climate sensitivity of North American soil fungal assemblage composition by modelling the ecological niches of several thousand fungal species. LocationOne hundred and thirteen sites in the United States and Canada spanning all biomes except tropical rain forest. Major Taxa StudiedFungi. Time Period2011–2018. MethodsWe combine internal transcribed spacer (ITS) sequences from two continental‐scale sampling networks in North America and cluster them into operational taxonomic units (OTUs) at 97% similarity. Using climate and soil data, we fit ecological niche models (ENMs) based on logistic ridge regression for all OTUs present in at least 10 sites (n = 8597). To describe the compositional turnover of soil fungal assemblages over climatic gradients, we introduce a novel niche‐based metric of climate sensitivity, the Sørensen climate sensitivity index. Finally, we map climate sensitivity across North America. ResultsENMs have a mean out‐of‐sample predictive accuracy of 73.8%, with temperature variables being strong predictors of fungal distributions. Soil fungal climate niches clump together across environmental space, which suggests common physiological limits and predicts abrupt changes in composition with respect to changes in climate. Soil fungi in North American climates are more likely to be limited by cold and dry conditions than by warm and wet conditions, and ectomycorrhizal fungi generally tolerate colder temperatures than saprotrophic fungi. Sørensen climate sensitivity exhibits a multimodal distribution across environmental space, with a peak in climates corresponding to boreal forests. Main ConclusionsThe boreal forest occupies an especially precarious region of environmental space for the composition of soil fungal assemblages in North America, as even small degrees of warming could trigger large compositional changes characterized mainly by an influx of warm‐adapted species. 
    more » « less
  5. Abstract AimRoots and rhizospheres host diverse microbial communities that can influence the fitness, phenotypes, and environmental tolerances of plants. Documenting the biogeography of these microbiomes can detect the potential for a changing environment to disrupt host‐microbe interactions, particularly in cases where microbes buffer hosts against abiotic stressors. We evaluated whether root‐associated fungi had poleward declines in diversity, tested whether fungal communities in roots shifted near host plant range edges, and determined the relative importance of environmental and host predictors of root fungal community structure. LocationNorth American plains grasslands. TaxonFoundation grasses –Andropogon gerardii, Bouteloua dactyloides, B. eriopoda, B. gracilis,andSchizachyrium scopariumand root fungi. MethodsAt each of 24 sites representing three replicate 17°–latitudinal gradients, we collected roots from 12 individuals per species along five transects spaced 10 m apart (40 m × 40 m grid). We used next‐generation sequencing of ITS2, direct fungal culturing from roots, and microscopy to survey fungi associated with grass roots. ResultsRoot‐associated fungi did not follow the poleward declines in diversity documented for many animals and plants. Instead, host plant identity had the largest influence on fungal community structure. Edaphic factors outranked climate or host plant traits as correlates of fungal community structure; however, the relative importance of environmental predictors differed among plant species. As sampling approached host species range edges, fungal composition converged in similarity among individual plants of each grass species. Main conclusionsEnvironmental predictors of root‐associated fungi depended strongly on host plant species identity. Biogeographic patterns in fungal composition suggested a homogenizing influence of stressors at host plant range limits. Results predict that communities of non‐mycorrhizal, root‐associated fungi in the North American plains will be more sensitive to future changes in host plant ranges and edaphic factors than to the direct effects of climate. 
    more » « less