skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on April 11, 2026

Title: Spatial Clustering of Citizen Science Data Improves Downstream Species Distribution Models
Citizen science biodiversity data present great opportunities for ecology and conservation across vast spatial and temporal scales. However, the opportunistic nature of these data lacks the sampling structure required by modeling methodologies that address a pervasive challenge in ecological data collection: imperfect detection, i.e., the likelihood of under-observing species on field surveys. Occupancy modeling is an example of an approach that accounts for imperfect detection by explicitly modeling the observation process separately from the biological process of habitat selection. This produces species distribution models that speak to the pattern of the species on a landscape after accounting for imperfect detection in the data, rather than the pattern of species observations corrupted by errors. To achieve this benefit, occupancy models require multiple surveys of a site across which the site's status (i.e., occupied or not) is assumed constant. Since citizen science data are not collected under the required repeated-visit protocol, observations may be grouped into sites post hoc. Existing approaches for constructing sites discard some observations and/or consider only geographic distance and not environmental similarity. In this study, we compare ten approaches for site construction in terms of their impact on downstream species distribution models for 31 bird species in Oregon, using observations recorded in the eBird database. We find that occupancy models built on sites constructed by spatial clustering algorithms perform better than existing alternatives.  more » « less
Award ID(s):
2046678
PAR ID:
10585197
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Proceedings of the 39th Annual AAAI Conference on Artificial Intelligence
Date Published:
Journal Name:
Proceedings of the AAAI Conference on Artificial Intelligence
Volume:
39
Issue:
27
ISSN:
2159-5399
Page Range / eLocation ID:
27775 to 27783
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract An occupancy model makes use of data that are structured as sets of repeated visits to each of many sites, in order to estimate the actual probability of occupancy (i.e. proportion of occupied sites) after correcting for imperfect detection using the information contained in the sets of repeated observations. We explore the conditions under which preexisting, volunteer-collected data from the citizen science project eBird can be used for fitting occupancy models. Because the majority of eBird’s data are not collected in the form of repeated observations at individual locations, we explore 2 ways in which the single-visit records could be used in occupancy models. First, we assess the potential for space-for-time substitution: aggregating single-visit records from different locations within a region into pseudo-repeat visits. On average, eBird’s observers did not make their observations at locations that were representative of the habitat in the surrounding area, which would lead to biased estimates of occupancy probabilities when using space-for-time substitution. Thus, the use of space-for-time substitution is not always appropriate. Second, we explored the utility of including data from single-visit records to supplement sets of repeated-visit data. In a simulation study we found that inclusion of single-visit records increased the precision of occupancy estimates, but only when detection probabilities are high. When detection probability was low, the addition of single-visit records exacerbated biases in estimates of occupancy probability. We conclude that subsets of data from eBird, and likely from similar projects, can be used for occupancy modeling either using space-for-time substitution or supplementing repeated-visit data with data from single-visit records. The appropriateness of either alternative will depend on the goals of a study and on the probabilities of detection and occupancy of the species of interest. 
    more » « less
  2. Abstract Determining the spatial distributions of species and communities is a key task in ecology and conservation efforts. Joint species distribution models are a fundamental tool in community ecology that use multi‐species detection–nondetection data to estimate species distributions and biodiversity metrics. The analysis of such data is complicated by residual correlations between species, imperfect detection, and spatial autocorrelation. While many methods exist to accommodate each of these complexities, there are few examples in the literature that address and explore all three complexities simultaneously. Here we developed a spatial factor multi‐species occupancy model to explicitly account for species correlations, imperfect detection, and spatial autocorrelation. The proposed model uses a spatial factor dimension reduction approach and Nearest Neighbor Gaussian Processes to ensure computational efficiency for data sets with both a large number of species (e.g., >100) and spatial locations (e.g., 100,000). We compared the proposed model performance to five alternative models, each addressing a subset of the three complexities. We implemented the proposed and alternative models in thespOccupancysoftware, designed to facilitate application via an accessible, well documented, and open‐source R package. Using simulations, we found that ignoring the three complexities when present leads to inferior model predictive performance, and the impacts of failing to account for one or more complexities will depend on the objectives of a given study. Using a case study on 98 bird species across the continental US, the spatial factor multi‐species occupancy model had the highest predictive performance among the alternative models. Our proposed framework, together with its implementation inspOccupancy, serves as a user‐friendly tool to understand spatial variation in species distributions and biodiversity while addressing common complexities in multi‐species detection–nondetection data. 
    more » « less
  3. Abstract Spatial models for occupancy data are used to estimate and map the true presence of a species, which may depend on biotic and abiotic factors as well as spatial autocorrelation. Traditionally researchers have accounted for spatial autocorrelation in occupancy data by using a correlated normally distributed site‐level random effect, which might be incapable of modeling nontraditional spatial dependence such as discontinuities and abrupt transitions. Machine learning approaches have the potential to model nontraditional spatial dependence, but these approaches do not account for observer errors such as false absences. By combining the flexibility of Bayesian hierarchal modeling and machine learning approaches, we present a general framework to model occupancy data that accounts for both traditional and nontraditional spatial dependence as well as false absences. We demonstrate our framework using six synthetic occupancy data sets and two real data sets. Our results demonstrate how to model both traditional and nontraditional spatial dependence in occupancy data, which enables a broader class of spatial occupancy models that can be used to improve predictive accuracy and model adequacy. 
    more » « less
  4. Abstract AimAbundance–occupancy relationships posit that more locally abundant species occupy more sites than less abundant species. Although widely supported, the occurrence and detection of abundance–occupancy relationships is sensitive to sampling and detection processes. Data from large‐scale standardized sampling efforts are key to address abundance–occupancy relationships. We aimed to use such a dataset to evaluate the occurrence of abundance–occupancy relationships across different spatial grains and over time for aquatic and terrestrial taxa. LocationUSA. Time period2014–2019. Major taxa studiedBirds, mammals, beetles, ticks, fishes, macroinvertebrates and zooplankton. MethodsSpecies abundance and occupancy data were obtained from the National Ecological Observatory Network (NEON). Species mean abundance and occupancy (fraction of sampled locations that were occupied) were estimated for three different spatial grains (i.e., plot, site and domain) for all years sampled. Linear models were used to explore the consistency of interspecific abundance–occupancy relationships. The slope coefficients of these models were related to temporal and spatial variables and to species richness while controlling for taxa in a linear mixed‐effects model (LMM) framework. ResultsWe found evidence for positive abundance–occupancy relationships across the three spatial grains and over time for all taxa we studied. However, our linear models had low explanatory power, suggesting that relationships, although general, were weak. Abundance–occupancy relationships were slightly stronger at the smallest spatial grain than at the largest spatial grain, but showed no detectable change over time for any taxa. Finally, species richness was not associated with the strength of these relationships. Main conclusionsTogether, our results suggest that positive interspecific abundance–occupancy relationships are fairly general but are not capable of explaining substantial variation in spatial patterns of abundance, and that other factors, such as species traits and niche, are also likely to influence these relationships. 
    more » « less
  5. Abstract Occupancy modelling is a common approach to assess species distribution patterns, while explicitly accounting for false absences in detection–nondetection data. Numerous extensions of the basic single‐species occupancy model exist to model multiple species, spatial autocorrelation and to integrate multiple data types. However, development of specialized and computationally efficient software to incorporate such extensions, especially for large datasets, is scarce or absent.We introduce thespOccupancy Rpackage designed to fit single‐species and multi‐species spatially explicit occupancy models. We fit all models within a Bayesian framework using Pólya‐Gamma data augmentation, which results in fast and efficient inference.spOccupancyprovides functionality for data integration of multiple single‐species detection–nondetection datasets via a joint likelihood framework. The package leverages Nearest Neighbour Gaussian Processes to account for spatial autocorrelation, which enables spatially explicit occupancy modelling for potentially massive datasets (e.g. 1,000s–100,000s of sites).spOccupancyprovides user‐friendly functions for data simulation, model fitting, model validation (by posterior predictive checks), model comparison (using information criteria and k‐fold cross‐validation) and out‐of‐sample prediction. We illustrate the package's functionality via a vignette, simulated data analysis and two bird case studies.ThespOccupancypackage provides a user‐friendly platform to fit a variety of single and multi‐species occupancy models, making it straightforward to address detection biases and spatial autocorrelation in species distribution models even for large datasets. 
    more » « less