skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Taxonomy of Tobrilidae species from the Alkaline Lakes of the western Nebraska Sandhills
Abstract Six distinct COI mitochondrial Haplotype Groups (HG) are morphologically, ecologically, and genetically characterized from the aquatic nematode family Tobrilidae. Collection locations included the extreme habitats of the Alkaline Lakes in the western Nebraska Sandhills and the contaminated stream, Johnson Creek, bordering the AltEn 2021 catastrophic pesticide release near the village of Mead in eastern Nebraska. Maximum likelihood and genetic distance metrics supported the genetic integrity of the haplotype groups. Discriminant function analysis of COI haplotype group datasets of combined morphological characters and soil chemistry attributes for both male and female Tobrilidae were classified correctly in all but one case. Scanning electron microscopy revealed new details about amphid apertures, male supplements, and spicules. Partial 18S gene phylogeny suggests that the genusSemitobrilusmay not be a member of the subfamily Neotobrilinae, and three specimens in the 226 tobrilid dataset provide evidence of incongruence between COI and 18S derived phylogenies. Given the strong signal provided by the environmental chemistry data, tobrilid mitochondrial haplotypes may well have value as environmental indicators.  more » « less
Award ID(s):
2327477
PAR ID:
10585264
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Sciendo
Date Published:
Journal Name:
Journal of Nematology
Volume:
56
Issue:
1
ISSN:
2640-396X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Grant, William (Ed.)
    Abstract The euphausiid genus Stylocheiron includes species with biogeographical distributions spanning multiple ocean basins. Despite their circumglobal distributions, the species show low levels of genetic diversity and little or no evidence of population structure based on the mitochondrial cytochrome oxidase I (COI) barcode region, with the exception of a possible cryptic species within Stylocheiron affine. Stylocheiron elongatum showed < 1% variation of the COI barcode region among populations in different ocean basins, but analysis of samples collected from the Florida Current (February, 1993) and Gulf Stream Meander Region (April, 1993) in the Northwest Atlantic Ocean revealed small-but-significant genetic differentiation between samples based on a different section of COI and mitochondrial cytochrome b (CYB). Both COI and CYB showed large haplotype and small nucleotide diversities, departures from neutral expectations, and haplotype networks consistent with persistent genetic structuring of the species population. These patterns of diversity indicate the presence of selection driving population divergence. We hypothesize that position-keeping by this deep-living, non-migrating euphausiid species may prevent genetic homogenization (panmixia) in the dynamic Gulf Stream System. This study demonstrates the importance of analyzing patterns of genetic diversity and structure at regional and global scales to understand the ecological and evolutionary processes impacting marine zooplankton. 
    more » « less
  2. DNA metabarcoding and morphological taxonomic (microscopic) analysis of the gut contents was used to examine diet diversity of seven species of fishes collected from mesopelagic depths (200-1000 m) in the NW Atlantic Ocean Slope Water during Summer 2018 and 2019. Metabarcoding used two gene regions: V9 hypervariable region of nuclear 18S rRNA and mitochondrial cytochrome oxidase I (COI). V9 sequences were classified into 14 invertebrate prey groups, excluding fish due to predator swamping. Ecological network analysis was used to evaluate relative strengths of predator-prey linkages. Multivariate statistical analysis revealed consistently distinct diets of four fish species in 2018 and/or 2019:Argyropelecus aculeatus, Chauliodus sloani, Hygophum hygomii, andSigmops elongatus. Three other species analyzed (Malacosteus niger, Nemichthys scolopaceus, andScopelogadus beanii) showed more variability between sampling years. COI sequences were classified into eight invertebrate prey groups, within which prey species were detected and identified. Considering all predator species together, a total of 77 prey species were detected with a minimum of 1,000 COI sequences, including 22 copepods, 18 euphausiids, and 7 amphipods. Morphological prey counts were classified into seven taxonomic groups, including a gelatinous group comprised of soft-bodied organisms. The ocean twilight zone or is home to exceptional diversity and biomass of marine fish, which are key players in deep sea food webs. This study used integrative morphological-molecular analysis to provide new insights into trophic relationships and sources of productivity for mesopelagic fishes, including identification of key prey species, recognition of the importance of gelatinous prey, and characterization of differences in diet among fish predators in the NW Atlantic Slope Water. 
    more » « less
  3. ABSTRACT The generaParamoebaandNeoparamoeba, within the family Paramoebidae (order Dactylopodida), are distinguished by their dactylopodial pseudopodia and the presence of an intracellular eukaryotic symbiont, thePerkinsela‐like organism (PLO). Taxonomic classification within these genera has been challenging due to overlapping morphological traits and close phylogenetic relationships.Theyare marine, with some playing significant roles as parasites. Notably, they have been implicated in sea urchin mass mortality events and are known causative agents of Amoebic Gill Disease (AGD) in fish. Despite their ecological and economic importance, many aspects of their diversity, biology, evolution, and host interactions remain poorly understood. In this study, we describe a novel amoeba species,Paramoeba daytonin. sp., isolated from Daytona Beach, Florida. Morphological and molecular analyses confirm its placement within theParamoebaclade, closely related toP. eilhardi,P. karteshi, andP. aparasomata. Phylogenetic assessments using 18S rDNA (18S) and Cytochrome c Oxidase I (COI) markers demonstrate the limitations of the 18S gene for species delineation, highlighting COI as a more reliable genetic marker for this group. Additionally, observations on PLO morphology, movement, and microtubule association provide insights into the endosymbiotic relationship, reinforcing the need for further research into this unique eukaryote‐eukaryote symbiosis. 
    more » « less
  4. Abstract Maternal inheritance of mitochondria creates a sex‐specific selective sieve through which mitochondrial mutations harmful to males but not females accumulate and contribute to sexual differences in longevity and disease susceptibility. Because eggs and sperm are under disruptive selection, sperm are predicted to be particularly vulnerable to the genetic load generated by maternal inheritance, yet evidence for mitochondrial involvement in male fertility is limited and controversial. Here, we exploit the coexistence of two divergent mitochondrial haplogroups (A and B2) in a Neotropical arachnid to investigate the role of mitochondria in sperm competition. DNA profiling demonstrated that B2‐carrying males sired more than three times as many offspring in sperm competition experiments than A males, and this B2 competitive advantage cannot be explained by female mitochondrial haplogroup or male nuclear genetic background. RNA‐Seq of testicular tissues implicates differential expression of mitochondrial oxidative phosphorylation (OXPHOS) genes in the B2 competitive advantage, including a 22‐fold upregulation ofatp8in B2 males. Previous comparative genomic analyses have revealed functionally significant amino acid substitutions in differentially expressed genes, indicating that the mitochondrial haplogroups differ not only in expression but also in DNA sequence and protein functioning. However, mitochondrial haplogroup had no effect on sperm number or sperm viability, and, when females were mated to a single male, neither male haplogroup, female haplogroup nor the interaction between male/female haplogroup significantly affected female reproductive success. Our findings therefore suggest that mitochondrial effects on male reproduction may often go undetected in noncompetitive contexts and may prove more important in nature than is currently appreciated. 
    more » « less
  5. Abstract A wide variety of species are distinguished by slight color variations. However, molecular analyses have repeatedly demonstrated that coloration does not always correspond to distinct evolutionary histories between closely related groups, suggesting that this trait is labile and can be misleading for species identification. In the present study, we analyze the evolutionary history of sister species ofPrionurussurgeonfishes in the Tropical Eastern Pacific (TEP), which are distinguished by the presence or absence of dark spots on their body. We examined the species limits in this system using comparative specimen‐based approaches, a mitochondrial gene (COI), more than 800 nuclear loci (Ultraconserved Elements), and abiotic niche comparisons. The results indicate there is a complete overlap of meristic counts and morphometric measurements between the two species. Further, we detected multiple individuals with intermediate spotting patterns suggesting that coloration is not diagnostic. Mitochondrial data recovered a single main haplotype shared between the species and all locations resulting in a complete lack of structure (ΦST = 0). Genomic analyses also suggest low levels of genetic differentiation (FST = 0.013), and no alternatively fixed SNPs were detected between the two phenotypes. Furthermore, niche comparisons could not reject niche equivalency or similarity between the species. These results suggest that these two phenotypes are conspecific and widely distributed in the TEP. Here, we recognizePrionurus punctatusGill 1862 as a junior subjective synonym ofP. laticlavius(Valenciennes 1846). The underlying causes of phenotypic variation in this species are unknown. However, this system gives insight into general evolutionary dynamics within the TEP. 
    more » « less