skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on April 8, 2026

Title: Selection for toxin production in spatially structured environments increases with growth rate
Abstract Microbes adopt a diversity of strategies to successfully compete with coexisting strains for space and resources. One common strategy is the production of toxic compounds to inhibit competitors, but the strength and direction of selection for this strategy varies depending on the environment. Existing theoretical and experimental evidence suggests growth in spatially structured environments makes toxin production more beneficial because competitive interactions are localized. Because higher growth rates reduce the length-scale of interactions in structured environments, theory predicts that toxin production should be especially beneficial under these conditions. We tested this hypothesis by developing a genome-scale metabolic modeling approach and complementing it with comparative genomics to investigate the impact of growth rate on selection for costly toxin production. Our modeling approach expands the current abilities of the dynamic flux balance analysis platform COMETS to incorporate signaling and toxin production. Using this capability, we find that our modeling framework predicts that the strength of selection for toxin production increases as growth rate increases. This finding is supported by comparative genomics analyses that include diverse microbial species. Our work emphasizes that toxin production is more likely to be maintained in rapidly growing, spatially structured communities, thus improving our ability to manage microbial communities and informing natural product discovery.  more » « less
Award ID(s):
1935458
PAR ID:
10585299
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
The ISME Journal
ISSN:
1751-7362
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Antagonistic interactions are widespread in the microbial world and affect microbial evolutionary dynamics. Natural microbial communities often display spatial structure, which affects biological interactions, but much of what we know about microbial antagonism comes from laboratory studies of well-mixed communities. To overcome this limitation, we manipulated two killer strains of the budding yeastSaccharomyces cerevisiae, expressing different toxins, to independently control the rate at which they released their toxins. We developed mathematical models that predict the experimental dynamics of competition between toxin-producing strains in both well-mixed and spatially structured populations. In both situations, we experimentally verified theory’s prediction that a stronger antagonist can invade a weaker one only if the initial invading population exceeds a critical frequency or size. Finally, we found that toxin-resistant cells and weaker killers arose in spatially structured competitions between toxin-producing strains, suggesting that adaptive evolution can affect the outcome of microbial antagonism in spatial settings. 
    more » « less
  2. Abstract Controlled greenhouse studies have shown the numerous ways that soil microbes can impact plant growth and development. However, natural soil communities are highly complex, and plants interact with many bacterial and fungal taxa simultaneously. Due to logistical challenges associated with manipulating more complex microbiome communities, how microbial communities impact emergent patterns of plant growth therefore remains poorly understood. For instance, do the interactions between bacteria and fungi generally yield additive (i.e. sum of their parts) or nonadditive, higher order plant growth responses? Without this information, our ability to accurately predict plant responses to microbial inoculants is weakened. To address these issues, we conducted a meta-analysis to determine the type (additive or higher-order, nonadditive interactions), frequency, direction (positive or negative), and strength that bacteria and mycorrhizal fungi (arbuscular and ectomycorrhizal) have on six phenotypic plant growth responses. Our results demonstrate that co-inoculations of bacteria and mycorrhizal fungi tend to have positive additive effects on many commonly reported plant responses. However, ectomycorrhizal plant shoot height responds positively and nonadditively to co-inoculations of bacteria and ectomycorrhizal fungi, and the strength of additive effects also differs between mycorrhizae type. These findings suggest that inferences from greenhouse studies likely scale to more complex field settings and that inoculating plants with diverse, beneficial microbes is a sound strategy to support plant growth. 
    more » « less
  3. Bordenstein, Seth (Ed.)
    ABSTRACT Encounters among bacteria and their viral predators (bacteriophages) are among the most common ecological interactions on Earth. These encounters are likely to occur with regularity inside surface-bound communities that microbes most often occupy in natural environments. Such communities, termed biofilms, are spatially constrained: interactions become limited to near neighbors, diffusion of solutes and particulates can be reduced, and there is pronounced heterogeneity in nutrient access and physiological state. It is appreciated from prior theoretical work that phage-bacteria interactions are fundamentally different in spatially structured contexts, as opposed to well-mixed liquid culture. Spatially structured communities are predicted to promote the protection of susceptible host cells from phage exposure, and thus weaken selection for phage resistance. The details and generality of this prediction in realistic biofilm environments, however, are not known. Here, we explore phage-host interactions using experiments and simulations that are tuned to represent the essential elements of biofilm communities. Our simulations show that in biofilms, phage-resistant cells—as their relative abundance increases—can protect clusters of susceptible cells from phage exposure, promoting the coexistence of susceptible and phage-resistant bacteria under a large array of conditions. We characterize the population dynamics underlying this coexistence, and we show that coexistence is recapitulated in an experimental model of biofilm growth measured with confocal microscopy. Our results provide a clear view into the dynamics of phage resistance in biofilms with single-cell resolution of the underlying cell-virion interactions, linking the predictions of canonical theory to realistic models and in vitro experiments of biofilm growth. IMPORTANCE In the natural environment, bacteria most often live in communities bound to one another by secreted adhesives. These communities, or biofilms, play a central role in biogeochemical cycling, microbiome functioning, wastewater treatment, and disease. Wherever there are bacteria, there are also viruses that attack them, called phages. Interactions between bacteria and phages are likely to occur ubiquitously in biofilms. We show here, using simulations and experiments, that biofilms will in most conditions allow phage-susceptible bacteria to be protected from phage exposure, if they are growing alongside other cells that are phage resistant. This result has implications for the fundamental ecology of phage-bacteria interactions, as well as the development of phage-based antimicrobial therapeutics. 
    more » « less
  4. Summary Microbial communities can rapidly respond to stress, meaning plants may encounter altered soil microbial communities in stressful environments. These altered microbial communities may then affect natural selection on plants. Because stress can cause lasting changes to microbial communities, microbes may also cause legacy effects on plant selection that persist even after the stress ceases.To explore how microbial responses to stress and persistent microbial legacy effects of stress affect natural selection, we grewChamaecrista fasciculataplants in stressful (salt, herbicide, or herbivory) or nonstressful conditions with microbes that had experienced each of these environments in the previous generation.Microbial community responses to stress generally counteracted the effects of stress itself on plant selection, thereby weakening the strength of stress as a selective agent. Microbial legacy effects of stress altered plant selection in nonstressful environments, suggesting that stress‐induced changes to microbes may continue to affect selection after stress is lifted.These results suggest that soil microbes may play a cryptic role in plant adaptation to stress, potentially reducing the strength of stress as a selective agent and altering the evolutionary trajectory of plant populations. 
    more » « less
  5. The assembly and maintenance of microbial diversity in natural communities, despite the abundance of toxin-based antagonistic interactions, presents major challenges for biological understanding. A common framework for investigating such antagonistic interactions involves cyclic dominance games with pairwise interactions. The incorporation of higher-order interactions in such models permits increased levels of microbial diversity, especially in communities in which antibiotic-producing, sensitive, and resistant strains coexist. However, most such models involve a small number of discrete species, assume a notion of pure cyclic dominance, and focus on low mutation rate regimes, none of which well represent the highly interlinked, quickly evolving, and continuous nature of microbial phenotypic space. Here, we present an alternative vision of spatial dynamics for microbial communities based on antagonistic interactions—one in which a large number of species interact in continuous phenotypic space, are capable of rapid mutation, and engage in both direct and higher-order interactions mediated by production of and resistance to antibiotics. Focusing on toxin production, vulnerability, and inhibition among species, we observe highly divergent patterns of diversity and spatial community dynamics. We find that species interaction constraints (rather than mobility) best predict spatiotemporal disturbance regimes, whereas community formation time, mobility, and mutation size best explain patterns of diversity. We also report an intriguing relationship among community formation time, spatial disturbance regimes, and diversity dynamics. This relationship, which suggests that both higher-order interactions and rapid evolution are critical for the origin and maintenance of microbial diversity, has broad-ranging links to the maintenance of diversity in other systems. 
    more » « less