skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on February 1, 2026

Title: Hurricane evacuation analysis with large-scale mobile device location data during Hurricane Ian
Award ID(s):
2338959
PAR ID:
10585588
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Transportation Research Part D: Transport and Environment
Volume:
139
Issue:
C
ISSN:
1361-9209
Page Range / eLocation ID:
104559
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This project contains imagery collected from uncrewed aircraft system (UAS) flights over three barrier islands, Fort Myers Beach (FMB), San Carlos (SC), and Sanibel Island (SI), that are near Fort Myers, Florida, following Hurricane Ian. These barrier islands had substantial impacts from the hurricane, including the destruction of many residences and infrastructure, coastal degradation, and other environmental impacts. The imagery here was collected using a low-flying fixed-wing UAS with a high-resolution camera system that simultaneously collected oblique and nadir images from five lenses. The raw data set is very comprehensive and very dense. The extent of the collected data can be seen in the Hazmapper map. The data was processed into 3D models using structure from motion. The resulting 3D models have amazing damage detail and are measurement quality. They can be used to fully characterize damage to buildings, infrastructure, and the natural environment. The complete models are available here, with one model developed for each UAS flight (18 total flights). However, the complete models are very large data sets and require significant GPU power to open and manipulate. Thus, the data set is also divided into “tiled” areas on a 300-meter grid. Each tiled area is provided in both a full-resolution 3D model and a reduced-resolution preview that can be used for quick inspection. The tiles are named and distributed as shown here: https://arcg.is/19TLr5. The abbreviations for Fort Myers Beach (FMB), San Carlos (SC), and Sanibel Island (SI) are used throughout. The data set was collected and processed by the NHERI RAPID Facility and was part of the deployment by the Structural Engineering Extreme Events Reconnaissance Network (StEER). 
    more » « less
  2. Cao, Jason Xinyu; Ge, Ying-En (Ed.)
    This study explores household-level evacuation decision-making in response to Hurricane Laura, in a context where hurricane risk reduction measures contradicted COVID-19 risk reduction measures. Data were collected using a mail-based survey approach from households along the coast of Texas and Louisiana to explore drivers of and barriers to evacuation, including COVID-19 measures such as negative affect, risk perceptions, protective actions, and exposure. Testing for direct and indirect effects among the drivers of and barriers to evacuation, we find that many of our COVID-19 measures did not have a direct effect on evacuation but did have indirect effects through other factors. We also found evidence of both direct and indirect relationships with regards to more conventional drivers of evacuation found in the literature. We close with a discussion of the limitations and implications of this study. 
    more » « less
  3. null (Ed.)
    Abstract The hurricane boundary layer (HBL) has been observed in great detail through aircraft investigations of tropical cyclones over the open ocean, but the coastal transition of the HBL has been less frequently observed. During the landfall of Hurricane Irene (2011), research and operational aircraft over water sampled the open-ocean HBL simultaneously with ground-based research and operational Doppler radars onshore. The location of the radars afforded 13 h of dual-Doppler analysis over the coastal region. Thus, the HBL from the coastal waterways, through the coastal transition, and onshore was observed in great detail for the first time. Three regimes of HBL structure were found. The outer bands were characterized by temporal perturbations of the HBL structure with attendant low-level wind maxima in the vicinity of rainbands. The inner core, in contrast, did not produce such perturbations, but did see a reduction of the height of the maximum wind and a more jet-like HBL wind profile. In the eyewall, a tangential wind maximum was observed within the HBL over water as in past studies and above the HBL onshore. However, the transition of the tangential wind maximum through the coastal transition showed that the maximum continued to reside in the HBL through 5 km inland, which has not been observed previously. It is shown that the adjustment of the HBL to the coastal surface roughness discontinuity does not immediately mix out the residual high-momentum jet aloft. Thus, communities closest to the coast are likely to experience the strongest winds onshore prior to the complete adjustment of the HBL. 
    more » « less
  4. Reconnaissance following Hurricane Ida. Wind damage to light structures, flooding, levee failures, coastal erosion. Field photos, Lidar, UAVs. 
    more » « less
  5. Babski-Reeves, K.; Eksioglu, B.; Hampton, D. (Ed.)
    In this paper, we study an integrated hurricane relief logistics and evacuation planning (HRLEP) problem. We propose stochastic optimization models and methods that integrate the hurricane relief item pre-positioning problem and the hurricane evacuation planning problem, which are often treated as separate problems in the literature, by incorporating the forecast information as well as the forecast errors (FE). Specifically, we fit historical FE data into an auto-regressive model of order one (AR-1), from which we generate FE realizations to create evacuation demand scenarios. We compare a static decision policy based on the proposed stochastic optimization model with a dynamic policy obtained by applying this model in a rolling-horizon (RH) procedure. We conduct a preliminary numerical experiment based on real-world data to validate the value of stochastic optimization and the value of the dynamic policy based on the RH procedure. 
    more » « less