This content will become publicly available on January 1, 2026
Title: Impact of mineral dust on the global nitrate aerosol direct and indirect radiative effect
Abstract. Nitrate (NO3-) aerosol is projected to increase dramatically in the coming decades and may become the dominant inorganic particle species. This is due to the continued strong decrease in SO2 emissions, which is not accompanied by a corresponding decrease in NOx and especially NH3 emissions. Thus, the radiative effect (RE) of NO3- aerosol may become more important than that of SO42- aerosol in the future. The physicochemical interactions of mineral dust particles with gas and aerosol tracers play an important role in influencing the overall RE of dust and non-dust aerosols but can be a major source of uncertainty due to their lack of representation in many global climate models. Therefore, this study investigates how and to what extent dust affects the current global NO3- aerosol radiative effect through both radiation (REari) and cloud interactions (REaci) at the top of the atmosphere (TOA). For this purpose, multiyear simulations nudged towards the observed atmospheric circulation were performed with the global atmospheric chemistry and climate model EMAC, while the thermodynamics of the interactions between inorganic aerosols and mineral dust were simulated with the thermodynamic equilibrium model ISORROPIA-lite. The emission flux of the mineral cations Na+, Ca2+, K+, and Mg2+ is calculated as a fraction of the total aeolian dust emission based on the unique chemical composition of the major deserts worldwide. Our results reveal positive and negative shortwave and longwave radiative effects in different regions of the world via aerosol–radiation interactions and cloud adjustments. Overall, the NO3- aerosol direct effect contributes a global cooling of −0.11 W m−2, driven by fine-mode particle cooling at short wavelengths. Regarding the indirect effect, it is noteworthy that NO3- aerosol exerts a global mean warming of +0.17 W m−2. While the presence of NO3- aerosol enhances the ability of mineral dust particles to act as cloud condensation nuclei (CCN), it simultaneously inhibits the formation of cloud droplets from the smaller anthropogenic particles. This is due to the coagulation of fine anthropogenic CCN particles with the larger nitrate-coated mineral dust particles, which leads to a reduction in total aerosol number concentration. This mechanism results in an overall reduced cloud albedo effect and is thus attributed as warming. more »« less
Jongebloed, U. A.; Schauer, A. J.; Cole‐Dai, J.; Larrick, C. G.; Wood, R.; Fischer, T. P.; Carn, S. A.; Salimi, S.; Edouard, S. R.; Zhai, S.; et al
(, Geophysical Research Letters)
Abstract The Arctic is warming at almost four times the global rate. An estimated sixty percent of greenhouse‐gas‐induced Arctic warming has been offset by anthropogenic aerosols, but the contribution of aerosols to radiative forcing (RF) represents the largest uncertainty in estimating total RF, largely due to unknown preindustrial aerosol abundance. Here, sulfur isotope measurements in a Greenland ice core show that passive volcanic degassing contributes up to 66 ± 10% of preindustrial ice core sulfate in years without major eruptions. A state‐of‐the‐art model indicates passive volcanic sulfur emissions influencing the Arctic are underestimated by up to a factor of three, possibly because many volcanic inventories do not include hydrogen sulfide emissions. Higher preindustrial volcanic sulfur emissions reduce modeled anthropogenic Arctic aerosol cooling by up to a factor of two (+0.11 to +0.29 W m−2), suggesting that underestimating passive volcanic sulfur emissions has significant implications for anthropogenic‐induced Arctic climate change.
Ito, Akinori; Adebiyi, Adeyemi A.; Huang, Yue; Kok, Jasper F.
(, Atmospheric Chemistry and Physics)
Abstract. Mineral dust aerosols cool and warm the atmosphere byscattering and absorbing solar (shortwave: SW) and thermal (longwave: LW)radiation. However, significant uncertainties remain in dust radiativeeffects, largely due to differences in the dust size distribution andspectral optical properties simulated in Earth system models. Dust modelstypically underestimate the coarse dust load (more than 2.5 µm indiameter) and assume a spherical shape, which leads to an overestimate ofthe fine dust load (less than 2.5 µm) after the dust emissions in themodels are scaled to match observed dust aerosol optical depth at 550 nm(DAOD550). Here, we improve the simulated dust properties with data setsthat leverage measurements of size-resolved dust concentration, asphericityfactor, and refractive index in a coupled global chemical transport modelwith a radiative transfer module. After the adjustment of size-resolved dustconcentration and spectral optical properties, the global and annual averageof DAOD550 from the simulation increases from 0.023 to 0.029 and fallswithin the range of a semi-observationally based estimate (0.030 ± 0.005). The reduction of fine dust load after the adjustment leads to areduction of the SW cooling at the top of the atmosphere (TOA). To improveagreement against a semi-observationally based estimate of the radiativeeffect efficiency at TOA, we find that a less absorptive SW dust refractiveindex is required for coarser aspherical dust. Thus, only a minor differenceis estimated for the net global dust radiative effect at TOA (−0.08 vs.−0.00 W m−2 on a global scale). Conversely, our sensitivitysimulations reveal that the surface warming is substantially enhanced nearthe strong dust source regions (less cooling to −0.23 from −0.60 W m−2 on a global scale). Thus, less atmospheric radiativeheating is estimated near the major source regions (less heating to 0.15from 0.59 W m−2 on a global scale), because of enhanced LWwarming at the surface by the synergy of coarser size and aspherical shape.
Jongebloed, Ursula; Alexander, Becky; Cole-Dai, Jihong; Schauer, Andrew; Larrick, Carleigh; Wood, Robert; Fischer, Tobias; Carn, Simon; Salimi, Sara; Edouard, Shana; et al
(, NSF Arctic Data Center)
The Arctic is warming at almost four times the global rate. Cooling caused by anthropogenic aerosols has been estimated to offset sixty percent of greenhouse-gas-induced Arctic warming, but the contribution of aerosols to radiative forcing (RF) represents the largest uncertainty in estimating total RF, largely due to unknown preindustrial aerosol abundance. Here, sulfur isotope measurements in a Greenland ice core show that passive volcanic degassing contributes up to 66 ± 10% of preindustrial ice core sulfate in years without major eruptions. A state-of-the-art model indicates passive volcanic sulfur emissions influencing the Arctic are underestimated by up to a factor of three, possibly because many volcanic inventories do not include hydrogen sulfide emissions. Higher preindustrial volcanic sulfur emissions reduce modeled anthropogenic Arctic aerosol cooling by up to a factor of two (+0.11 to +0.29 W m-2 (watts per square meter)), suggesting that underestimating passive volcanic sulfur emissions has significant implications for anthropogenic-induced Arctic climate change. These data include sulfur isotopes of sulfate measurements from a Greenland ice core and volcanic gas measurements (CO2:S (carbon dioxide:sulfur) ratios) from various volcanoes and hot springs in Iceland.
Xenofontos, Christos; Kohl, Matthias; Ruhl, Samuel; Almeida, João; Caudillo-Plath, Lucía; Cruz-Simbron, Romulo; Dada, Lubna; Duplissy, Jonathan; Ehrhart, Sebastian; Finkenzeller, Henning; et al
(, Proceedings of the National Academy of Sciences)
Anthropogenic ammonia (NH3) emissions have significantly increased in recent decades due to enhanced agricultural activities, contributing to global air pollution. While the effects of NH3on surface air quality are well documented, its influence on particle dynamics in the upper troposphere-lower stratosphere (UTLS) and related aerosol impacts remain unquantified. NH3reaches the UTLS through convective transport and can enhance new particle formation (NPF). This modeling study evaluates the global impact of anthropogenic NH3on UTLS particle formation and quantifies its effects on aerosol loading and cloud condensation nuclei (CCN) abundance. We use the EMAC Earth system model, incorporating multicomponent NPF parameterizations from the CERN CLOUD experiment. Our simulations reveal that convective transport increases NH3-driven NPF in the UTLS by one to three orders of magnitude compared to a baseline scenario without anthropogenic NH3, causing a doubling of aerosol numbers over high-emission regions. These aerosol changes induce a 2.5-fold increase in upper tropospheric CCN concentrations. Anthropogenic NH3emissions increase the relative contribution of water-soluble inorganic ions to the UTLS aerosol optical depth (AOD) by 20% and increase total column AOD by up to 80%. In simulations without anthropogenic NH3, UTLS aerosol composition is dominated by sulfate and organic species, with a marked reduction in ammonium nitrate and aerosol water content. This results in a decline of aerosol mass concentration by up to 50%. These findings underscore the profound global influence of anthropogenic NH3emissions on UTLS particle formation, AOD, and CCN production, with important implications for cloud formation and climate.
Deep convective clouds (DCCs) are associated with the vertical ascent of air from the lower to the upper atmosphere. They appear in various forms such as thunderstorms, supercells, and squall lines. These convective systems play important roles in the hydrological cycle, Earth’s radiative budget, and the general circulation of the atmosphere. Changes in aerosol (both cloud condensation nuclei and ice-nucleating particles) affect cloud microphysics and dynamics, and thereby influence convective intensity, precipitation, and the radiative effects of deep clouds and their cirrus anvils. However, the very complex dynamics and cloud microphysics of DCCs means that many of these processes are not yet accurately quantified in observations and models. This chapter outlines the main ways in which changes in aerosol affect the microphysical, dynamical, and radiative properties of DCCs. Aerosol interactions with DCCs depend on aerosol properties, storm dynamics, and meteorological conditions. When aerosol particles are light-absorbing, such as soot from industry or biomass burning, the aerosol radiative effects can alter the meteorological conditions under which DCCs form. These radiative effects modify temperature profiles and planetary boundary layer heights, thus changing atmospheric stability and circulation, and affecting the onset and development of DCCs. These large-scale effects, such as the effect of anthropogenic aerosol on the East and South Asian monsoons, can be simulated in coarse-resolution models. These processes are described in Chapter 13. This chapter is concerned with aerosol interactions with DCC systems ranging from individual clouds to mesoscale convective systems. Increases in cloud condensation nuclei (CCN) can enhance cloud droplet number concentrations and decrease droplet sizes, thereby narrowing the droplet size spectrum. For DCCs, a narrowed droplet size spectrum suppresses warm rain formation (rain derived from non-ice-phase processes), allowing the transport of more, smaller droplets to altitudes below 0°C. This may result in (i) freezing of more supercooled water, thereby enhancing latent heating from icerelated microphysical processes and invigorating storms (ice-phase invigoration); (ii) modification of ice-related microphysical processes, which changes cold pools, precipitation rates, and hailstone frequency and size; (iii) expansion of the mixed-phase zone and decreases in the cloud glaciation temperature; and (iv) slowing down of cloud dissipation, resulting in larger cloud cover and cloud depth in the stratiform and anvil regions due to numerous smaller ice particles. The increased cloud cover and cloud depth constitute an influence of aerosol on the cloud radiative effect. Reduced diurnal temperature variation has been observed and simulated as a result of enhanced daytime cooling and nighttime warming by expanded anvil cloud area in polluted environments. However, the global radiative effect of aerosol interactions with DCCs remains to be quantified.
Milousis, Alexandros, Klingmüller, Klaus, Tsimpidi, Alexandra P, Kok, Jasper F, Kanakidou, Maria, Nenes, Athanasios, and Karydis, Vlassis A. Impact of mineral dust on the global nitrate aerosol direct and indirect radiative effect. Retrieved from https://par.nsf.gov/biblio/10585777. Atmospheric Chemistry and Physics 25.2 Web. doi:10.5194/acp-25-1333-2025.
Milousis, Alexandros, Klingmüller, Klaus, Tsimpidi, Alexandra P, Kok, Jasper F, Kanakidou, Maria, Nenes, Athanasios, & Karydis, Vlassis A. Impact of mineral dust on the global nitrate aerosol direct and indirect radiative effect. Atmospheric Chemistry and Physics, 25 (2). Retrieved from https://par.nsf.gov/biblio/10585777. https://doi.org/10.5194/acp-25-1333-2025
Milousis, Alexandros, Klingmüller, Klaus, Tsimpidi, Alexandra P, Kok, Jasper F, Kanakidou, Maria, Nenes, Athanasios, and Karydis, Vlassis A.
"Impact of mineral dust on the global nitrate aerosol direct and indirect radiative effect". Atmospheric Chemistry and Physics 25 (2). Country unknown/Code not available: European Geophysical Union. https://doi.org/10.5194/acp-25-1333-2025.https://par.nsf.gov/biblio/10585777.
@article{osti_10585777,
place = {Country unknown/Code not available},
title = {Impact of mineral dust on the global nitrate aerosol direct and indirect radiative effect},
url = {https://par.nsf.gov/biblio/10585777},
DOI = {10.5194/acp-25-1333-2025},
abstractNote = {Abstract. Nitrate (NO3-) aerosol is projected to increase dramatically in the coming decades and may become the dominant inorganic particle species. This is due to the continued strong decrease in SO2 emissions, which is not accompanied by a corresponding decrease in NOx and especially NH3 emissions. Thus, the radiative effect (RE) of NO3- aerosol may become more important than that of SO42- aerosol in the future. The physicochemical interactions of mineral dust particles with gas and aerosol tracers play an important role in influencing the overall RE of dust and non-dust aerosols but can be a major source of uncertainty due to their lack of representation in many global climate models. Therefore, this study investigates how and to what extent dust affects the current global NO3- aerosol radiative effect through both radiation (REari) and cloud interactions (REaci) at the top of the atmosphere (TOA). For this purpose, multiyear simulations nudged towards the observed atmospheric circulation were performed with the global atmospheric chemistry and climate model EMAC, while the thermodynamics of the interactions between inorganic aerosols and mineral dust were simulated with the thermodynamic equilibrium model ISORROPIA-lite. The emission flux of the mineral cations Na+, Ca2+, K+, and Mg2+ is calculated as a fraction of the total aeolian dust emission based on the unique chemical composition of the major deserts worldwide. Our results reveal positive and negative shortwave and longwave radiative effects in different regions of the world via aerosol–radiation interactions and cloud adjustments. Overall, the NO3- aerosol direct effect contributes a global cooling of −0.11 W m−2, driven by fine-mode particle cooling at short wavelengths. Regarding the indirect effect, it is noteworthy that NO3- aerosol exerts a global mean warming of +0.17 W m−2. While the presence of NO3- aerosol enhances the ability of mineral dust particles to act as cloud condensation nuclei (CCN), it simultaneously inhibits the formation of cloud droplets from the smaller anthropogenic particles. This is due to the coagulation of fine anthropogenic CCN particles with the larger nitrate-coated mineral dust particles, which leads to a reduction in total aerosol number concentration. This mechanism results in an overall reduced cloud albedo effect and is thus attributed as warming.},
journal = {Atmospheric Chemistry and Physics},
volume = {25},
number = {2},
publisher = {European Geophysical Union},
author = {Milousis, Alexandros and Klingmüller, Klaus and Tsimpidi, Alexandra P and Kok, Jasper F and Kanakidou, Maria and Nenes, Athanasios and Karydis, Vlassis A},
}
Warning: Leaving National Science Foundation Website
You are now leaving the National Science Foundation website to go to a non-government website.
Website:
NSF takes no responsibility for and exercises no control over the views expressed or the accuracy of
the information contained on this site. Also be aware that NSF's privacy policy does not apply to this site.