Abstract The modification of seed shattering has been a recurring theme in rice evolution. The wild ancestor of cultivated rice disperses its seeds, but reduced shattering was selected during multiple domestication events to facilitate harvesting. Conversely, selection for increased shattering occurred during the evolution of weedy rice, a weed invading cultivated rice fields that has originated multiple times from domesticated ancestors. Shattering requires formation of a tissue known as the abscission zone (AZ), but how the AZ has been modified throughout rice evolution is unclear. We quantitatively characterized the AZ characteristics of relative length, discontinuity, and intensity in 86 cultivated and weedy rice accessions. We reconstructed AZ evolutionary trajectories and determined the degree of convergence among different cultivated varieties and among independent weedy rice populations. AZ relative length emerged as the best feature to distinguish high and low shattering rice. Cultivated varieties differed in average AZ morphology, revealing lack of convergence in how shattering reduction was achieved during domestication. In contrast, weedy rice populations typically converged on complete AZs, irrespective of origin. By examining AZ population-level morphology, our study reveals its evolutionary plasticity, and suggests that the genetic potential to modify the ecologically and agronomically important trait of shattering is plentiful in rice lineages.
more »
« less
Experimental methods for phenotypic and molecular analyses of seed shattering in cultivated and weedy rice
The seed shattering trait has been repeatedly reshaped during rice evolution. Reduced in cultivated rice and increased in weedy rice, shattering is of great agronomic importance because of its association with yield losses. Since its first descriptions, the phenotypic patterns and the genetic regulation of cultivated and weedy rice seed shattering have been extensively studied, with a variety of methods and techniques. The aim of this review is to discuss and recommend the most suitable experimental methods for phenotypic and molecular evaluation of seed shattering in cultivated and weedy rice. Rice seed shattering must be quantified, preferably, by breaking tensile strength (BTS) assays, because other methods are more prone to human errors. The evaluation time is particularly important, and the developmental stages of the panicles measured need to be recorded. QTL analyses and GWAS studies are suitable for discovery of genes influencing shattering, but the resulting genes may only be relevant in the parental lines or the populations used. The variety of cultivated rice and evolutionary origin of weedy rice accessions has a great influence on results of rice seed shattering phenotypic and genotypic analyses and needs to always be taken into account.
more »
« less
- Award ID(s):
- 1947609
- PAR ID:
- 10586078
- Publisher / Repository:
- Journal of the Brazilian Weed Science Society
- Date Published:
- Journal Name:
- Advances in Weed Science
- Volume:
- 41
- ISSN:
- 2675-9462
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Societal Impact StatementWeedy plants are a major constraint on agricultural productivity. Weedy rice is a weed that invades rice fields worldwide and is responsible for reductions in rice yields. Studies to date have detected multiple independent weedy rice origins in different parts of the world. We investigated the origin of weedy rice in Spain and Portugal and found that it has evolved from a cultivated rice variety group grown locally. Iberian weeds carry mutations that reverse domesticated pericarp color to its ancestral red color. Our results imply that management strategies are needed to prevent the evolution of troublesome weeds from cultivated ancestors. SummaryWeedy rice, a damaging conspecific weed of cultivated rice, has arisen multiple times independently around the world. Understanding all weedy rice origins is necessary to create more effective weed management strategies. The origins of weedy rice in Spain and Portugal, where there are no nativeOryzaspecies, are unknown. In this study, we try to identify the likely ancestors of Iberian weedy rice and the mechanisms involved in the evolution of two weedy traits, seed shattering, and red pericarps.We used genotyping by sequencing to understand the origin of Iberian weedy rice and its relationship to other weedy, wild, and cultivated rice groups worldwide. We also genotyped candidate genes for shattering and pericarp color.We find that weedy rice in the Iberian Peninsula has primarily evolved through de‐domestication oftemperate japonicacultivars, with minor origins from exotic weedy rice. Iberian weeds have evolved the capacity to shatter seeds via novel loci and have acquired red pericarps via compensatory mutations in theRcdomestication gene. Our results suggest the Iberian weeds have experienced selection at multiple locations in the genome to establish as weeds, likely targeting male fertility genes among other functions.Our characterization of Iberian weedy rice adds to the growing evidence that de‐domestication of cultivated rice varieties is the main source of weedy rice worldwide. Their evolutionary versatility explains why weedy rice continues to be one of the most problematic weeds of cultivated rice.more » « less
-
SUMMARY The repeated evolution of high seed shattering during multiple independent de‐domestications of cultivated Asian rice (Oryza sativa) into weedy rice (Oryzaspp.) is a prime example of convergent evolution. Weedy rice populations converge in histological features of the abscission zone (AZ), a crucial structure for seed abscission, while ancestral cultivated rice populations exhibit varied AZ morphology and levels of shattering. However, the genetic bases of these phenotypic patterns remain unclear. We examined the expression profiles of the AZ region and its surrounding tissues at three developmental stages in two low‐shattering cultivars ofausandtemperate japonicadomesticated groups and in two genotypes of their derived high‐shattering weed groups, Blackhull Awned (BHA) and Spanish Weedy Rice (SWR), respectively. Consistent with the greater alteration of AZ morphology during the de‐domestication of SWR than BHA, fewer genes exhibited a comparable AZ‐region exclusive expression pattern between weed and crop in thetemperate japonicalineage than in theauslineage. Transcription factors related to the repression of lignin and secondary cell wall deposition, such as,OsWRKY102andOsXND‐1‐like, along with certain known shattering genes involved in AZ formation, likely played a role in maintaining AZ region identity in both lineages. Meanwhile, most genes exhibiting AZ‐region exclusive expression patterns do not overlap between the two lineages and the genes exhibiting differential expression in the AZ region between weed and crop across the two lineages are enriched for different gene ontology terms. Our findings suggest genetic flexibility in shaping AZ morphology, while genetic constraints on AZ identity determination in these two lineages.more » « less
-
Weeds that infest crops are a primary factor limiting agricultural productivity worldwide. Weedy rice, also called red rice, has experienced independent evolutionary events through gene flow from wild rice relatives and de-domestication from cultivated rice. Each evolutionary event supplied/equipped weedy rice with competitive abilities that allowed it to thrive with cultivated rice and severely reduce yields in rice fields. Understanding how competitiveness evolves is important not only for noxious agricultural weed management but also for the transfer of weedy rice traits to cultivated rice. Molecular studies of weedy rice using simple sequence repeat (SSR), restriction fragment length polymorphism (RFLP), and whole-genome sequence have shown great genetic variations in weedy rice populations globally. These variations are evident both at the whole-genome and at the single-allele level, including Sh4 (shattering), Hd1 (heading and flowering), and Rc (pericarp pigmentation). The goal of this review is to describe the genetic diversity of current weedy rice germplasm and the significance of weedy rice germplasm as a novel source of disease resistance. Understanding these variations, especially at an allelic level, is also crucial as individual loci that control important traits can be of great target to rice breeders.more » « less
-
Abstract Weedy rice (Oryzaspp.) is a weedy relative of the cultivated rice that competes with the crop and causes significant production loss. The BHA (blackhull awned) US weedy rice group has evolved fromauscultivated rice and differs from its ancestors in several important weediness traits, including flowering time, plant height and seed shattering. Prior attempts to determine the genetic basis of weediness traits in plants using linkage mapping approaches have not often considered weed origins. However, the timing of divergence between crossed parents can affect the detection of quantitative trait loci (QTL) relevant to the evolution of weediness. Here, we used a QTL‐seq approach that combines bulked segregant analysis and high‐throughput whole genome resequencing to map the three important weediness traits in an F2population derived from a cross between BHA weedy rice with an ancestralauscultivar. We compared these QTLs with those previously detected in a cross of BHA with a more distantly related crop,indica. We identified multiple QTLs that overlapped with regions under selection during the evolution of weedy BHA rice and some candidate genes possibly underlying the evolution weediness traits in BHA. We showed that QTLs detected with ancestor–descendant crosses are more likely to be involved in the evolution of weediness traits than those detected from crosses of more diverged taxa.more » « less
An official website of the United States government

