skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on June 23, 2026

Title: HADA: Hardware Assertion through Data Augmentation
Hardware security verification in hardware design has been identified as a significant bottleneck due to complexity and time-to-market constraints. Assertion-Based Verification is a recognized solution to this challenge; however, assertion generation relies on expertise and labor. While LLMs show promise as automated tools, existing approaches often rely on complex prompt engineering, requiring expert validation. The challenge lies in identifying effective methods for constructing training datasets that enhance LLMs' hardware performance. We introduce HADA (Hardware Assertion through Data Augmentation), a novel framework to train hardware debug specific expert LLM by leveraging its ability to integrate knowledge from formal verification tools, hardware security knowledge database, and version control system. Our results demonstrate that integrating multi-source data significantly enhances the effectiveness of hardware security verification, with each addressing the limitations of the others.  more » « less
Award ID(s):
2340949
PAR ID:
10586252
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
IEEE Design Automation Conference (DAC) 2025
Date Published:
Subject(s) / Keyword(s):
Large Language Model Hardware Security Assertion Formal Verification Assertion-Based Verification Data Augmentation Semi-Synthetic Dataset
Format(s):
Medium: X
Institution:
Kansas State University
Sponsoring Org:
National Science Foundation
More Like this
  1. Hardware verification of modern electronic systems has been identified as a major bottleneck due to the increasing complexity and time-to-market constraints. One of the major objectives in hardware verification is to drastically reduce the validation and debug time without sacrificing the design quality. Assertion-based verification is a promising avenue for efficient hardware validation and debug. In this paper, we provide a comprehensive survey of recent progress in assertion-based hardware verification. Specifically, we outline how to define assertions using temporal logic to specify expected behaviors in different abstraction levels. Next, we describe state-of-the art approaches for automated generation of assertions. We also discuss test generation techniques for activating assertions to ensure that the generated assertions are valid. Finally, we present both pre-silicon and post-silicon assertion-based validation approaches that utilize simulation, formal methods as well as hybrid techniques. We conclude with a discussion on utilizing assertions for verifying both functional and non-functional requirements. 
    more » « less
  2. System-on-Chip (SoC) security is vital in designing trustworthy systems. Detecting and fixing a vulnerability in the early stages is easier and cost-effective. Assertion-based verification is widely used for functional validation of Register-Transfer Level (RTL) designs. Assertions can improve the controllability and observability that can lead to faster error detection and localization. Although assertions are widely used for functional validation of RTL models, there is limited effort in applying assertions to detect SoC security vulnerabilities. Specifically, a fundamental challenge in SoC security and trust validation is how to develop high-quality security assertions. In this article, we perform automated vulnerability analysis of RTL models to generate security assertions for six classes of vulnerabilities. Experimental results show that the generated security assertions can detect a wide variety of vulnerabilities. Our automated framework can drastically reduce the overall security validation effort compared to the manual development of security assertions. Automated generation of security assertions will enable assertion-based verification to be one of the most promising pre-silicon security sign-off solutions. 
    more » « less
  3. Nadel, Alexander; Rozier, Kristin Yvonne (Ed.)
    Symbolic execution is a powerful verification tool for hardware designs, in particular for security validation. However, symbolic execution suffers from the path explosion problem in which the number of paths to explore grows exponentially with the number of branches in the design. We introduce a new approach, piecewise composition, which leverages the modular structure of hardware to transfer the work of path exploration to SMT solvers. Piecewise composition works by recognizing that independent parts of a design can each be explored once, and the exploration reused. A hardware design with N independent always blocks and at most b branch points per block will require exploration of O((2^b)N) paths in a single clock cycle with our approach compared to O(2^(bN)) paths using traditional symbolic execution. We present Sylvia, a symbolic execution engine implementing piecewise composition. The engine operates directly over RTL without requiring translation to a netlist or software simulation. We evaluate our tool on multiple open-source SoC and CPU designs, including the OR1200 and PULPissimo RISC-V SoC. The piecewise composition technique reduces the number of paths explored by an order of magnitude and reduces the runtime by 97% compared to our baseline. Using 84 properties from the security literature we find assertion violations in open-source designs that traditional model checking and formal verification tools do not find. 
    more » « less
  4. This article surveys the landscape of security verification approaches and techniques for computer systems at various levels: from a software-application level all the way to the physical hardware level. Different existing projects are compared, based on the tools used and security aspects being examined. Since many systems require both hardware and software components to work together to provide the system’s promised security protections, it is not sufficient to verify just the software levels or just the hardware levels in a mutually exclusive fashion. This survey especially highlights system levels that are verified by the different existing projects and presents to the readers the state of the art in hardware and software system security verification. Few approaches come close to providing full-system verification, and there is still much room for improvement. 
    more » « less
  5. null (Ed.)
    Assertions are widely used for functional validation as well as coverage analysis for both software and hardware designs. Assertions enable runtime error detection as well as faster localization of errors. While there is a vast literature on both software and hardware assertions for monitoring functional scenarios, there is limited effort in utilizing assertions to monitor System-on-Chip (SoC) security vulnerabilities. We have identified common SoC security vulnerabilities and defined several classes of assertions to enable runtime checking of security vulnerabilities. A major challenge in assertion-based validation is how to activate the security assertions to ensure that they are valid. While existing test generation using model checking is promising, it cannot generate directed tests for large designs due to state space explosion. We propose an automated and scalable mechanism to generate directed tests using a combination of symbolic execution and concrete simulation of RTL models. Experimental results on diverse benchmarks demonstrate that the directed tests are able to activate security assertions non-vacuously. 
    more » « less