Abstract Conceptual and empirical advances in soil biogeochemistry have challenged long-held assumptions about the role of soil micro-organisms in soil organic carbon (SOC) dynamics; yet, rigorous tests of emerging concepts remain sparse. Recent hypotheses suggest that microbial necromass production links plant inputs to SOC accumulation, with high-quality (i.e., rapidly decomposing) plant litter promoting microbial carbon use efficiency, growth, and turnover leading to more mineral stabilization of necromass. We test this hypothesis experimentally and with observations across six eastern US forests, using stable isotopes to measure microbial traits and SOC dynamics. Here we show, in both studies, that microbial growth, efficiency, and turnover are negatively (not positively) related to mineral-associated SOC. In the experiment, stimulation of microbial growth by high-quality litter enhances SOC decomposition, offsetting the positive effect of litter quality on SOC stabilization. We suggest that microbial necromass production is not the primary driver of SOC persistence in temperate forests. Factors such as microbial necromass origin, alternative SOC formation pathways, priming effects, and soil abiotic properties can strongly decouple microbial growth, efficiency, and turnover from mineral-associated SOC.
more »
« less
Rethinking assumptions about plant litter decomposition
Abstract Plant litter decomposition is the breakdown of dead plant biomass by abiotic and biotic means. In terrestrial ecosystems, decomposition regulates the fate of fixed plant carbon, contributing both to its release into the atmosphere and its long-term storage in soil organic matter. In the present article, we revisit four assumptions about decomposition in light of advances in microbiology. First, we consider fungi as primary decomposers, noting bacterial contributions to breaking down lignin and cellulose and overcoming nitrogen limitation. Second, we discuss evidence of the role of microbial communities on litter decomposition, challenging assumptions of microbial redundancy. Third, given these functional consequences of their composition, we examine whether surface litter and bulk soil microbial communities are interchangeable. Finally, we reevaluate the idea that soil organic matter originates from plant litter, emphasizing the pivotal role of microbial necromass. We highlight the importance of integrating microbiological findings into ecosystem ecology to accelerate research on carbon cycling in terrestrial ecosystems.
more »
« less
- Award ID(s):
- 2113004
- PAR ID:
- 10586277
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- BioScience
- ISSN:
- 0006-3568
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Litter decomposition determines soil organic matter (SOM) formation and plant‐available nutrient cycles. Therefore, accurate model representation of litter decomposition is critical to improving soil carbon (C) projections of bioenergy feedstocks. Soil C models that simulate microbial physiology (i.e., microbial models) are new to bioenergy agriculture, and their parameterization is often based on small datasets or manual calibration to reach benchmarks. Here, we reparameterized litter decomposition in a microbial soil C model (CORPSE ‐ Carbon, Organisms, Rhizosphere, and Protection in the Soil Environment) using the continental‐scale Long‐term Inter‐site Decomposition Experiment Team (LIDET) dataset which documents decomposition across a range of litter qualities over a decade. We conducted a simplified Monte Carlo simulation that constrained parameter values to reduce computational costs. The LIDET‐derived parameters improved modeled C and nitrogen (N) remaining, decomposition rates, and litter mean residence times as compared to Baseline parameters. We applied the LIDET litter decomposition parameters to a microbial bioenergy model (Fixation and Uptake of Nitrogen – Bioenergy Carbon, Rhizosphere, Organisms, and Protection) to examine soil C estimates generated by Baseline and LIDET parameters. LIDET parameters increased estimated soil C in bioenergy feedstocks, with even greater increases under elevated plant inputs (i.e., by increasing residue, N fertilization). This was due to the integrated effects of plant litter quantity, quality, and agricultural practices (tillage, fertilization). Collectively, we developed a simple framework for using large‐scale datasets to inform the parameterization of microbial models that impacts projections of soil C for bioenergy feedstocks.more » « less
-
Forest ecosystems are important global soil carbon (C) reservoirs, but their capacity to sequester C is susceptible to climate change factors that alter the quantity and quality of C inputs. To better understand forest soil C responses to altered C inputs, we integrated three molecular composition published data sets of soil organic matter (SOM) and soil microbial communities for mineral soils after 20 years of detrital input and removal treatments in two deciduous forests: Bousson Forest (BF), Harvard Forest (HF), and a coniferous forest: H.J. Andrews Forest (HJA). Soil C turnover times were estimated from radiocarbon measurements and compared with the molecular‐level data (based on nuclear magnetic resonance and specific analysis of plant‐ and microbial‐derived compounds) to better understand how ecosystem properties control soil C biogeochemistry and dynamics. Doubled aboveground litter additions did not increase soil C for any of the forests studied likely due to long‐term soil priming. The degree of SOM decomposition was higher for bacteria‐dominated sites with higher nitrogen (N) availability while lower for the N‐poor coniferous forest. Litter exclusions significantly decreased soil C, increased SOM decomposition state, and led to the adaptation of the microbial communities to changes in available substrates. Finally, although aboveground litter determined soil C dynamics and its molecular composition in the coniferous forest (HJA), belowground litter appeared to be more influential in broadleaf deciduous forests (BH and HF). This synthesis demonstrates that inherent ecosystem properties regulate how soil C dynamics change with litter manipulations at the molecular‐level. Across the forests studied, 20 years of litter additions did not enhance soil C content, whereas litter reductions negatively impacted soil C concentrations. These results indicate that soil C biogeochemistry at these temperate forests is highly sensitive to changes in litter deposition, which are a product of environmental change drivers.more » « less
-
Giovannoni, Stephen J; Weedon, James (Ed.)ABSTRACT Rapid climate change in the Arctic is altering microbial structure and function, with important consequences for the global ecosystem. Emerging evidence suggests organisms in higher trophic levels may also influence microbial communities, but whether warming alters these effects is unclear. Wolf spiders are dominant Arctic predators whose densities are expected to increase with warming. These predators have temperature-dependent effects on decomposition via their consumption of fungal-feeding detritivores, suggesting they may indirectly affect the microbial structure as well. To address this, we used a fully factorial mesocosm experiment to test the effects of wolf spider density and warming on litter microbial structure in Arctic tundra. We deployed replicate litter bags at the surface and belowground in the organic soil profile and analyzed the litter for bacterial and fungal community structure, mass loss, and nutrient characteristics after 2 and 14 months. We found there were significant interactive effects of wolf spider density and warming on fungal but not bacterial communities. Specifically, higher wolf spider densities caused greater fungal diversity under ambient temperature but lower fungal diversity under warming at the soil surface. We also observed interactive treatment effects on fungal composition belowground. Wolf spider density influenced surface bacterial composition, but the effects did not change with warming. These findings suggest a widespread predator can have indirect, cascading effects on litter microbes and that effects on fungi specifically shift under future expected levels of warming. Overall, our study highlights that trophic interactions may play important, albeit overlooked, roles in driving microbial responses to warming in Arctic terrestrial ecosystems. IMPORTANCEThe Arctic contains nearly half of the global pool of soil organic carbon and is one of the fastest warming regions on the planet. Accelerated decomposition of soil organic carbon due to warming could cause positive feedbacks to climate change through increased greenhouse gas emissions; thus, changes in ecological dynamics in this region are of global relevance. Microbial structure is an important driver of decomposition and is affected by both abiotic and biotic conditions. Yet how activities of soil-dwelling organisms in higher trophic levels influence microbial structure and function is unclear. In this study, we demonstrate that predicted changes in abundances of a dominant predator and warming interactively affect the structure of litter-dwelling fungal communities in the Arctic. These findings suggest predators may have widespread, indirect cascading effects on microbial communities, which could influence ecosystem responses to future climate change.more » « less
-
Abstract Human activities have led to increased deposition of nitrogen (N) and phosphorus (P) into soils. Nutrient enrichment of soils is known to increase plant biomass and rates of microbial litter decomposition. However, interacting effects of hydrologic position and associated changes to soil moisture can constrain microbial activity and lead to unexpected nutrient feedbacks on microbial community structure–function relationships. Examining feedbacks of nutrient enrichment on decomposition rates is essential for predicting microbial contributions to carbon (C) cycling as atmospheric deposition of nutrients persists. This study explored how long‐term nutrient addition and contrasting litter chemical composition influenced soil bacterial community structure and function. We hypothesized that long‐term nutrient enrichment of low fertility soils alters bacterial community structure and leads to higher rates of litter decomposition especially for low C:N litter, but low‐nutrient and dry conditions limit microbial decomposition of high C:N ratio litter. We leveraged a long‐term fertilization experiment to test how nutrient enrichment and hydrologic manipulation (due to ditches) affected decomposition and soil bacterial community structure in a nutrient‐poor coastal plain wetland. We conducted a litter bag experiment and characterized litter‐associated and bulk soil microbiomes using 16S rRNA bacterial sequencing and quantified litter mass losses and soil physicochemical properties. Results revealed that distinct bacterial communities were involved in decomposing higher C:N ratio litter more quickly in fertilized compared to unfertilized soils especially under drier soil conditions, while decomposition rates of lower C:N ratio litter were similar between fertilized and unfertilized plots. Bacterial community structure in part explained litter decomposition rates, and long‐term fertilization and drier hydrologic status affected bacterial diversity and increased decomposition rates. However, community composition associated with high C:N litter was similar in wetter plots with available nitrate detected, regardless of fertilization treatment. This study provides insight into long‐term fertilization effects on soil bacterial diversity and composition, decomposition, and the increased potential for soil C loss as nutrient enrichment and hydrology interact to affect historically low‐nutrient ecosystems.more » « less
An official website of the United States government
