skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Parental Dialectic: Epigenetic Conversations in Endosperm
Endosperm is a major evolutionary innovation of flowering plants, and its proper development critically impacts seed growth and viability. Epigenetic regulators have a key function in parental control of endosperm development. Notably, epigenetic regulation of parental genome dosage is a major determinant of seed development success, and disruption of this balance can produce inviable seed, as observed in some interploidy and interspecific crosses. These postzygotic reproduction barriers are also a potent driver of speciation. The molecular machinery and regulatory architecture governing endosperm development is proposed to have evolved under parental conflict. In this review, we emphasize parental conflict as a dialectic conflict and discuss recent findings about the epigenetic molecular machinery that mediates parental conflict in the endosperm.  more » « less
Award ID(s):
2101337
PAR ID:
10586357
Author(s) / Creator(s):
;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Current opinion in plant biology
ISSN:
1369-5266
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Fertilization is a fundamental process that triggers seed and fruit development, but the molecular mechanisms underlying fertilization-induced seed development are poorly understood. Previous research has established AGamous-Like62 (AGL62) activation and auxin biosynthesis in the endosperm as key events following fertilization in Arabidopsis (Arabidopsis thaliana) and wild strawberry (Fragaria vesca). To test the hypothesis that epigenetic mechanisms are critical in mediating the effect of fertilization on the activation of AGL62 and auxin biosynthesis in the endosperm, we first identified and analyzed imprinted genes from the endosperm of wild strawberries. We isolated endosperm tissues from F1 seeds of 2 wild strawberry F. vesca subspecies, generated endosperm-enriched transcriptomes, and identified candidate Maternally Expressed and Paternally Expressed Genes (MEGs and PEGs). Through bioinformatic analyses, we identified 4 imprinted genes that may be involved in regulating the expression of FveAGL62 and auxin biosynthesis genes. We conducted functional analysis of a maternally expressed gene FveMYB98 through CRISPR-knockout and over-expression in transgenic strawberries as well as analysis in heterologous systems. FveMYB98 directly repressed FveAGL62 at stage 3 endosperm, which likely serves to limit auxin synthesis and endosperm proliferation. These results provide an inroad into the regulation of early-stage seed development by imprinted genes in strawberries, suggest the potential function of imprinted genes in parental conflict, and identify FveMYB98 as a regulator of a key transition point in endosperm development. 
    more » « less
  2. Chen, Xuemei (Ed.)
    Gene expression in endosperm—a seed tissue that mediates transfer of maternal resources to offspring—is under complex epigenetic control. We show here that plant-specific RNA polymerase IV (Pol IV) mediates parental control of endosperm gene expression. Pol IV is required for the production of small interfering RNAs that typically direct DNA methylation. We compared small RNAs (sRNAs), DNA methylation, and mRNAs in Arabidopsis thaliana endosperm from heterozygotes produced by reciprocally crossing wild-type (WT) plants to Pol IV mutants. We find that maternally and paternally acting Pol IV induce distinct effects on endosperm. Loss of maternal or paternal Pol IV impacts sRNAs and DNA methylation at different genomic sites. Strikingly, maternally and paternally acting Pol IV have antagonistic impacts on gene expression at some loci, divergently promoting or repressing endosperm gene expression. Antagonistic parent-of-origin effects have only rarely been described and are consistent with a gene regulatory system evolving under parental conflict. 
    more » « less
  3. Abstract Endosperm is an angiosperm innovation central to their reproduction whose development, and thus seed viability, is controlled by genomic imprinting, where expression from certain genes is parent-specific. Unsuccessful imprinting has been linked to failed inter-specific and inter-ploidy hybridization. Despite their importance in plant speciation, the underlying mechanisms behind these endosperm-based barriers remain poorly understood. Here, we describe one such barrier between diploid Mimulus guttatus and tetraploid Mimulus luteus. The two parents differ in endosperm DNA methylation, expression dynamics, and imprinted genes. Hybrid seeds suffer from underdeveloped endosperm, reducing viability, or arrested endosperm and seed abortion when M. guttatus or M. luteus is seed parent, respectively, and transgressive methylation and expression patterns emerge. The two inherited M. luteus subgenomes, genetically distinct but epigenetically similar, are expressionally dominant over the M. guttatus genome in hybrid embryos and especially their endosperm, where paternal imprints are perturbed. In aborted seeds, de novo methylation is inhibited, potentially owing to incompatible paternal instructions of imbalanced dosage from M. guttatus imprints. We suggest that diverged epigenetic/regulatory landscapes between parental genomes induce epigenetic repatterning and global shifts in expression, which, in endosperm, may uniquely facilitate incompatible interactions between divergent imprinting schemes, potentially driving rapid barriers. 
    more » « less
  4. Evolution is driven by various mechanisms. A directional increase in the embryo to endosperm ratio is an evolutionary trend within the angiosperms. The endosperm constitutes a major portion of the seed volume in Poales and some dicots. However, in other dicots such as Arabidopsis and soybean, the endosperm proliferates early, followed by embryo growth to replace the endosperm. The Arabidopsis leucine-rich repeat receptor protein kinase AtHAIKU2 (AtIKU2) is a key regulator of early endosperm proliferation. In this study, we found that IKU2s from Brachypodium, rice, and soybean can complement the abnormal seed developmental phenotype of Atiku2, while AtIKU2 also rescues the defective endosperm proliferation in the Brachypodium BdIKU2 knockout mutant seeds. AtIKU2 and soybean GmIKU2 are actively expressed a few days after fertilization. Thereafter, expression of AtIKU2 is suppressed by the FIS-PRC2 complex-mediated H3K27me3. The soybean GmIKU2 locus is also enriched with H3K27me3 marks. The histone methyltransferase AtMEA is unique to Brassicaceae, but one GmSWN in soybean plays a similar role in seed development as AtMEA. By contrast, the BdIKU2 and rice OsIKU2 loci are continuously expressed and are devoid of H3K27me3 marks. Taken together, these results suggest that IKU2 genes retain an ancestral function, but the duration of their expression that is controlled by PRC2-mediated epigenetic silencing contributes to silenced or persistent endosperm proliferation in different species. Our study reveals an epigenetic mechanism that drives the development of vastly different seed ontogenies. 
    more » « less
  5. Abstract Cereal grains are an important source of food and feed. To provide comprehensive spatiotemporal information about biological processes in developing seeds of cultivated barley (Hordeum vulgare L. subsp. vulgare), we performed a transcriptomic study of the embryo, endosperm, and seed maternal tissues collected from grains 4–32 days after pollination. Weighted gene co-expression network and motif enrichment analyses identified specific groups of genes and transcription factors (TFs) potentially regulating barley seed tissue development. We defined a set of tissue-specific marker genes and families of TFs for functional studies of the pathways controlling barley grain development. Assessing selected groups of chromatin regulators revealed that epigenetic processes are highly dynamic and likely play a major role during barley endosperm development. The repressive H3K27me3 modification is globally reduced in endosperm tissues and at specific genes related to development and storage compounds. Altogether, this atlas uncovers the complexity of developmentally regulated gene expression in developing barley grains. 
    more » « less