SUMMARY The spatio-temporal properties of seismicity give us incisive insight into the stress state evolution and fault structures of the crust. Empirical models based on self-exciting point processes continue to provide an important tool for analysing seismicity, given the epistemic uncertainty associated with physical models. In particular, the epidemic-type aftershock sequence (ETAS) model acts as a reference model for studying seismicity catalogues. The traditional ETAS model uses simple parametric definitions for the background rate of triggering-independent seismicity. This reduces the effectiveness of the basic ETAS model in modelling the temporally complex seismicity patterns seen in seismic swarms that are dominated by aseismic tectonic processes such as fluid injection rather than aftershock triggering. In order to robustly capture time-varying seismicity rates, we introduce a deep Gaussian process (GP) formulation for the background rate as an extension to ETAS. GPs are a robust non-parametric model for function spaces with covariance structure. By conditioning the length-scale structure of a GP with another GP, we have a deep-GP: a probabilistic, hierarchical model that automatically tunes its structure to match data constraints. We show how the deep-GP-ETAS model can be efficiently sampled by making use of a Metropolis-within-Gibbs scheme, taking advantage of the branching process formulation of ETAS and a stochastic partial differential equation (SPDE) approximation for Matérn GPs. We illustrate our method using synthetic examples, and show that the deep-GP-ETAS model successfully captures multiscale temporal behaviour in the background forcing rate of seismicity. We then apply the results to two real-data catalogues: the Ridgecrest, CA 2019 July 5 Mw 7.1 event catalogue, showing that deep-GP-ETAS can successfully characterize a classical aftershock sequence; and the 2016–2019 Cahuilla, CA earthquake swarm, which shows two distinct phases of aseismic forcing concordant with a fluid injection-driven initial sequence, arrest of the fluid along a physical barrier and release following the largest Mw 4.4 event of the sequence.
more »
« less
This content will become publicly available on April 17, 2026
Multi-output stochastic emulation with applications to seismic response correlation estimation
Stochastic emulation techniques represent a specialized surrogate modeling branch that is appropriate for applications for which the relationship between input and output is stochastic in nature. Their objective is to address the stochastic uncertainty sources by directly predicting the output distribution for a given input. An example of such application, and the focus of this contribution, is the estimation of structural response (engineering demand parameter) distribution in seismic risk assessment. In this case, the stochastic uncertainty originates from the aleatoric variability in the seismic hazard description. Note that this is a different uncertainty-source than the potential parametric uncertainty associated with structural characteristics or explanatory variables for the seismic hazard (for example, intensity measures), that are treated as the parametric input in surrogate modeling context. The key challenge in stochastic emulation pertains to addressing heteroscedasticity in the output variability. Relevant approaches to-date for addressing this challenge have focused on scalar outputs. In contrast, this paper focuses on the multi-output stochastic emulation problem and presents a methodology for predicting the output correlation matrix, while fully addressing heteroscedastic characteristics. This is achieved by introducing a Gaussian Process (GP) regression model for approximating the components of the correlation matrix, and coupling this approximation with a correction step to guarantee positive definite properties for the resultant predictions. For obtaining the observation data to inform the GP calibration, different approaches are examined, relying-or-not on the existence of replicated samples for the response output. Such samples require that, for a portion of the training points, simulations are repeated for the same inputs and different descriptions of the stochastic uncertainty. This information can be readily used to obtain observation for the response statistics (correlation or covariance in this instance) to inform the GP development. An alternative approach is to use as observations noisy covariance samples based on the sample deviations from a primitive mean approximation. These different observation variants lead to different GP variants that are compared within a comprehensive case study. A computational framework for integrating the correlation matrix approximation within the stochastic emulation for the marginal distribution approximation of each output component is also discussed, to provide the joint response distribution approximation.
more »
« less
- Award ID(s):
- 2131111
- PAR ID:
- 10586358
- Publisher / Repository:
- Elsevier
- Date Published:
- Journal Name:
- Structural safety
- Volume:
- 115
- Issue:
- 2025
- ISSN:
- 0167-4730
- Subject(s) / Keyword(s):
- Process regression Seismic risk estimation Surrogate modeling
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
When rheological models of polymer blends are used for inverse modeling, they can characterize polymer mixtures from rheological observations. This requires repeated evaluation of potentially expensive rheological models. We explored surrogate models based on Gaussian processes (GP-SM) as a cheaper alternative for describing the rheology of polydisperse binary blends. We used the time-dependent diffusion double reptation (TDD-DR) model as the true model; it takes a 5-dimensional input vector specifying the binary blend as input and yields a function called the relaxation spectrum as output. We used the TDD-DR model to generate training data of different sizes [Formula: see text], via Latin hypercube sampling. The optimal values of the GP-SM hyper-parameters, assuming a separable covariance kernel, were obtained by maximum likelihood estimation. The GP-SM interpolates the training data by design and offers reasonable predictions of relaxation spectra with uncertainty estimates. In general, the accuracy of GP-SMs improves as the size of the training data [Formula: see text] increases, as does the cost for training and prediction. The optimal hyper-parameters were found to be relatively insensitive to [Formula: see text]. Finally, we considered the inverse problem of inferring the structure of the polymer blend from a synthetic dataset generated using the true model. Surprisingly, the solution to the inverse problem obtained using GP-SMs and TDD-DR was qualitatively similar. GP-SMs can be several orders of magnitude cheaper than expensive rheological models, which provides a proof-of-concept validation for using GP-SMs for inverse problems in polymer rheology.more » « less
-
Summary Uncertainty quantification for linear inverse problems remains a challenging task, especially for problems with a very large number of unknown parameters (e.g., dynamic inverse problems) and for problems where computation of the square root and inverse of the prior covariance matrix are not feasible. This work exploits Krylov subspace methods to develop and analyze new techniques for large‐scale uncertainty quantification in inverse problems. In this work, we assume that generalized Golub‐Kahan‐based methods have been used to compute an estimate of the solution, and we describe efficient methods to explore the posterior distribution. In particular, we use the generalized Golub‐Kahan bidiagonalization to derive an approximation of the posterior covariance matrix, and we provide theoretical results that quantify the accuracy of the approximate posterior covariance matrix and of the resulting posterior distribution. Then, we describe efficient methods that use the approximation to compute measures of uncertainty, including the Kullback‐Liebler divergence. We present two methods that use the preconditioned Lanczos algorithm to efficiently generate samples from the posterior distribution. Numerical examples from dynamic photoacoustic tomography demonstrate the effectiveness of the described approaches.more » « less
-
In this work, generalized polynomial chaos (gPC) expansion for land surface model parameter estimation is evaluated. We perform inverse modeling and compute the posterior distribution of the critical hydrological parameters that are subject to great uncertainty in the Community Land Model (CLM) for a given value of the output LH. The unknown parameters include those that have been identified as the most influential factors on the simulations of surface and subsurface runoff, latent and sensible heat fluxes, and soil moisture in CLM4.0. We set up the inversion problem in the Bayesian framework in two steps: (i) building a surrogate model expressing the input–output mapping, and (ii) performing inverse modeling and computing the posterior distributions of the input parameters using observation data for a given value of the output LH. The development of the surrogate model is carried out with a Bayesian procedure based on the variable selection methods that use gPC expansions. Our approach accounts for bases selection uncertainty and quantifies the importance of the gPC terms, and, hence, all of the input parameters, via the associated posterior probabilities.more » « less
-
Abstract Nonlinear response history analysis (NLRHA) is generally considered to be a reliable and robust method to assess the seismic performance of buildings under strong ground motions. While NLRHA is fairly straightforward to evaluate individual structures for a select set of ground motions at a specific building site, it becomes less practical for performing large numbers of analyses to evaluate either (1) multiple models of alternative design realizations with a site‐specific set of ground motions, or (2) individual archetype building models at multiple sites with multiple sets of ground motions. In this regard, surrogate models offer an alternative to running repeated NLRHAs for variable design realizations or ground motions. In this paper, a recently developed surrogate modeling technique, called probabilistic learning on manifolds (PLoM), is presented to estimate structural seismic response. Essentially, the PLoM method provides an efficient stochastic model to develop mappings between random variables, which can then be used to efficiently estimate the structural responses for systems with variations in design/modeling parameters or ground motion characteristics. The PLoM algorithm is introduced and then used in two case studies of 12‐story buildings for estimating probability distributions of structural responses. The first example focuses on the mapping between variable design parameters of a multidegree‐of‐freedom analysis model and its peak story drift and acceleration responses. The second example applies the PLoM technique to estimate structural responses for variations in site‐specific ground motion characteristics. In both examples, training data sets are generated for orthogonal input parameter grids, and test data sets are developed for input parameters with prescribed statistical distributions. Validation studies are performed to examine the accuracy and efficiency of the PLoM models. Overall, both examples show good agreement between the PLoM model estimates and verification data sets. Moreover, in contrast to other common surrogate modeling techniques, the PLoM model is able to preserve correlation structure between peak responses. Parametric studies are conducted to understand the influence of different PLoM tuning parameters on its prediction accuracy.more » « less
An official website of the United States government
