skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on February 1, 2026

Title: Spectrum Sharing Characterization Using Smartphones: Exploring 6 GHz Sharing Through Large-Scale Wi-Fi 6E Measurements
Award ID(s):
2132700
PAR ID:
10586387
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
IEEE Communications Magazine
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Unclonable cryptography utilizes the principles of quantum mechanics to addresses cryptographic tasks that are impossible classically. We introduce a novel unclonable primitive in the context of secret sharing, called unclonable secret sharing (USS). In a USS scheme, there are n shareholders, each holding a share of a classical secret represented as a quantum state. They can recover the secret once all parties (or at least t parties) come together with their shares. Importantly, it should be infeasible to copy their own shares and send the copies to two non-communicating parties, enabling both of them to recover the secret. Our work initiates a formal investigation into the realm of unclonable secret sharing, shedding light on its implications, constructions, and inherent limitations. Connections: We explore the connections between USS and other quantum cryptographic primitives such as unclonable encryption and position verification, showing the difficulties to achieve USS in different scenarios. Limited Entanglement: In the case where the adversarial shareholders do not share any entanglement or limited entanglement, we demonstrate information-theoretic constructions for USS. Large Entanglement: If we allow the adversarial shareholders to have unbounded entanglement resources (and unbounded computation), we prove that unclonable secret sharing is impossible. On the other hand, in the quantum random oracle model where the adversary can only make a bounded polynomial number of queries, we show a construction secure even with unbounded entanglement. Furthermore, even when these adversaries possess only a polynomial amount of entanglement resources, we establish that any unclonable secret sharing scheme with a reconstruction function implementable using Cliffords and logarithmically many T-gates is also unattainable. 
    more » « less
  2. Queue-Sharing Multiple Access (QSMA) is introduced and analyzed. The new channel-access method consists of establishing and maintaining a distributed transmission queue among nodes sharing a common channel and results in a sequence of queue cycles, with each cycle having one or multiple queue turns with collision-free transmissions from nodes that have joined the transmission queue, followed by a joining period for the current cycle. Nodes can take advantage of carrier sensing to improve the efficiency with which nodes join and use the shared transmission queue. The through- put of ALOHA with priority ACK’s, CSMA with priority ACK’s, CSMA/CD with priority ACK’s, TDMA with a fixed schedule, and QSMA with and without carrier sensing is compared analytically and by simulation in ns-3. The results show that QSMA is more efficient than TDMA with the simplicity of CSMA or ALOHA. 
    more » « less
  3. Spectrum sharing, including dynamic spectrum sharing, is arguably the most significant overarching feature of the new era of spectrum management. The emphasis on sharing spectrum recognizes the importance of balancing the needs of different users of an exceptionally valuable resource. Despite the equitable features of spectrum sharing, what has been underemphasized in spectrum management is its colonial features from the perspective of Native Nations. This paper proposes ways to decolonize dynamic spectrum sharing and, in the process, improve prospects for a new spectrum era that recognizes Native Nations as collaborators in the American system of spectrum management. 
    more » « less