Dialog systems (e.g., chatbots) have been widely studied, yet related research that leverages artificial intelligence (AI) and natural language processing (NLP) is constantly evolving. These systems have typically been developed to interact with humans in the form of speech, visual, or text conversation. As humans continue to adopt dialog systems for various objectives, there is a need to involve humans in every facet of the dialog development life cycle for synergistic augmentation of both the humans and the dialog system actors in real-world settings. We provide a holistic literature survey on the recent advancements inhuman-centered dialog systems(HCDS). Specifically, we provide background context surrounding the recent advancements in machine learning-based dialog systems and human-centered AI. We then bridge the gap between the two AI sub-fields and organize the research works on HCDS under three major categories (i.e., Human-Chatbot Collaboration, Human-Chatbot Alignment, Human-Centered Chatbot Design & Governance). In addition, we discuss the applicability and accessibility of the HCDS implementations through benchmark datasets, application scenarios, and downstream NLP tasks.
more »
« less
HUMAN-AI COLLABORATION IN GROUP CREATIVITY
AI tools have proliferated in workplace settings to support various tasks. The extent and nature of their use continue to evolve as new A.I. tools, like generative A.I., disrupt the business landscape. To date, most human-AI collaboration research studies chatbots and their use in customer service settings, thus focusing past investigations on basic one-on-one interactions. However, as organizations are increasingly structured alongside teams, understanding human-AI collaboration to support true collaboration (i.e., between multiple users) and activities that reach beyond customer service settings, appears crucial. Hereto, this paper explores the role of chatbot communication style—human versus machine—and chatbot role—as a passive process facilitator versus an active ideator—in influencing group collaborative creativity in the context of remote teamwork. Expanding our understanding of human-AI collaboration has the potential to generate significant theoretical and practical implications for collaborative and remote work uses of AI tools characteristic of today’s hybrid workplaces.
more »
« less
- Award ID(s):
- 1749018
- PAR ID:
- 10586703
- Publisher / Repository:
- Association for Information Systems
- Date Published:
- Format(s):
- Medium: X
- Location:
- Paphos, Cyprus
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Dynamic conversational agent-based support for collaborative learning has shown significant positive effects on learning over no-support or static-support control conditions in prior studies. In order to understand the boundary between human-led and AI-led support for collaboration, we compare in this study an approach where the agent’s primary role is to help students regulate their own collaboration with two more typical prompting strategies that are used only during a reflection phase: one designed to provide a specific informational focus for the reflection, and the other designed to draw out evaluation, elaboration, and exploration of alternative perspectives. Significant positive effects on learning over and above just the human-led form of support are observed when either of the prompting strategies are used.more » « less
-
Remote scientific collaborations have been pivotal in generating scientific discoveries and breakthroughs that accelerate research in many fields. Emerging VR applications for remote work, which utilize commercially available head-mounted displays (HMDs), offer the promise to enhance collaboration, through spatial and embodied experiences. However, there is little evidence on how professionals in general, and scientists in particular, could use existing commercial VR applications to support their cognitive and creative collaborative processes while exploring real-world data as part of day-to-day collaborative work. In this paper, we present findings from an empirical study with 14 coral reef scientists, examining how they chose to utilize available resources in existing virtual environments for their ongoing data-driven collaborative research. We shed light on scientists’ data organization practices, identify affordances unique to VR for supporting cognition in a collaborative setting, and highlight design requirements for supporting cognitive and creative collaboration processes in future tools.more » « less
-
AbstractRecent advances in generative artificial intelligence (AI) and multimodal learning analytics (MMLA) have allowed for new and creative ways of leveraging AI to support K12 students' collaborative learning in STEM+C domains. To date, there is little evidence of AI methods supporting students' collaboration in complex, open‐ended environments. AI systems are known to underperform humans in (1) interpreting students' emotions in learning contexts, (2) grasping the nuances of social interactions and (3) understanding domain‐specific information that was not well‐represented in the training data. As such, combined human and AI (ie, hybrid) approaches are needed to overcome the current limitations of AI systems. In this paper, we take a first step towards investigating how a human‐AI collaboration between teachers and researchers using an AI‐generated multimodal timeline can guide and support teachers' feedback while addressing students' STEM+C difficulties as they work collaboratively to build computational models and solve problems. In doing so, we present a framework characterizing the human component of our human‐AI partnership as a collaboration between teachers and researchers. To evaluate our approach, we present our timeline to a high school teacher and discuss the key insights gleaned from our discussions. Our case study analysis reveals the effectiveness of an iterative approach to using human‐AI collaboration to address students' STEM+C challenges: the teacher can use the AI‐generated timeline to guide formative feedback for students, and the researchers can leverage the teacher's feedback to help improve the multimodal timeline. Additionally, we characterize our findings with respect to two events of interest to the teacher: (1) when the students cross adifficulty threshold,and (2) thepoint of intervention, that is, when the teacher (or system) should intervene to provide effective feedback. It is important to note that the teacher explained that there should be a lag between (1) and (2) to give students a chance to resolve their own difficulties. Typically, such a lag is not implemented in computer‐based learning environments that provide feedback. Practitioner notesWhat is already known about this topicCollaborative, open‐ended learning environments enhance students' STEM+C conceptual understanding and practice, but they introduce additional complexities when students learn concepts spanning multiple domains.Recent advances in generative AI and MMLA allow for integrating multiple datastreams to derive holistic views of students' states, which can support more informed feedback mechanisms to address students' difficulties in complex STEM+C environments.Hybrid human‐AI approaches can help address collaborating students' STEM+C difficulties by combining the domain knowledge, emotional intelligence and social awareness of human experts with the general knowledge and efficiency of AI.What this paper addsWe extend a previous human‐AI collaboration framework using a hybrid intelligence approach to characterize the human component of the partnership as a researcher‐teacher partnership and present our approach as a teacher‐researcher‐AI collaboration.We adapt an AI‐generated multimodal timeline to actualize our human‐AI collaboration by pairing the timeline with videos of students encountering difficulties, engaging in active discussions with a high school teacher while watching the videos to discern the timeline's utility in the classroom.From our discussions with the teacher, we define two types ofinflection pointsto address students' STEM+C difficulties—thedifficulty thresholdand theintervention point—and discuss how thefeedback latency intervalseparating them can inform educator interventions.We discuss two ways in which our teacher‐researcher‐AI collaboration can help teachers support students encountering STEM+C difficulties: (1) teachers using the multimodal timeline to guide feedback for students, and (2) researchers using teachers' input to iteratively refine the multimodal timeline.Implications for practice and/or policyOur case study suggests that timeline gaps (ie, disengaged behaviour identified by off‐screen students, pauses in discourse and lulls in environment actions) are particularly important for identifying inflection points and formulating formative feedback.Human‐AI collaboration exists on a dynamic spectrum and requires varying degrees of human control and AI automation depending on the context of the learning task and students' work in the environment.Our analysis of this human‐AI collaboration using a multimodal timeline can be extended in the future to support students and teachers in additional ways, for example, designing pedagogical agents that interact directly with students, developing intervention and reflection tools for teachers, helping teachers craft daily lesson plans and aiding teachers and administrators in designing curricula.more » « less
-
null (Ed.)Orchestration tools may support K-12 teachers in facilitating student learning, especially when designed to address classroom stakeholders’ needs. Our previous work revealed a need for human-AI shared control when dynamically pairing students for collaborative learning in the classroom, but offered limited guidance on the role each agent should take. In this study, we designed storyboards for scenarios where teachers, students and AI co-orchestrate dynamic pairing when using AI-based adaptive math software for individual and collaborative learning. We surveyed 54 math teachers on their co-orchestration preferences. We found that teachers would like to share control with the AI to lessen their orchestration load. As well, they would like to have the AI propose student pairs with explanations, and identify risky proposed pairings. However, teachers are hesitant to let the AI auto-pair students even if they are busy, and are less inclined to let AI override teacher-proposed pairing. Our study contributes to teachers’ needs, preference, and boundaries for how they want to share the task and control of student pairing with the AI and students, and design implications in human-AI co-orchestration tools.more » « less
An official website of the United States government

