In this paper, we present a novel approach for fluid dynamic simulations by leveraging the capabilities of Physics-Informed Neural Networks (PINNs) guided by the newly unveiled Principle of Minimum Pressure Gradient (PMPG). In a PINN formulation, the physics problem is converted into a minimization problem (typically least squares). The PMPG asserts that for incompressible flows, the total magnitude of the pressure gradient over the domain must be minimum at every time instant, turning fluid mechanics into minimization problems, making it an excellent choice for PINNs formulation. Following the PMPG, the proposed PINN formulation seeks to construct a neural network for the flow field that minimizes Nature's cost function for incompressible flows in contrast to traditional PINNs that minimize the residuals of the Navier–Stokes equations. This technique eliminates the need to train a separate pressure model, thereby reducing training time and computational costs. We demonstrate the effectiveness of this approach through a case study of inviscid flow around a cylinder. The proposed approach outperforms the traditional PINNs approach in terms of training time, convergence rate, and compliance with physical metrics. While demonstrated on a simple geometry, the methodology is extensible to more complex flow fields (e.g., three-dimensional, unsteady, and viscous flows) within the incompressible realm, which is the region of applicability of the PMPG.
more »
« less
This content will become publicly available on December 1, 2025
Multiple scale method integrated physics-informed neural networks for reconstructing transient natural convection
This study employs physics-informed neural networks (PINNs) to reconstruct multiple flow fields in a transient natural convection system solely based on instantaneous temperature data at an arbitrary moment. Transient convection problems present reconstruction challenges due to the temporal variability of fields across different flow phases. In general, large reconstruction errors are observed during the incipient phase, while the quasi-steady phase exhibits relatively smaller errors, reduced by a factor of 2–4. We hypothesize that reconstruction errors vary across different flow phases due to the changing solution space of a PINN, inferred from the temporal gradients of the fields. Furthermore, we find that reconstruction errors tend to accumulate in regions where the spatial gradients are smaller than the order of 10−6, likely due to the vanishing gradient phenomenon. In convection phenomena, field variations often manifest across multiple scales in space. However, PINN-based reconstruction tends to preserve larger-scale variations, while smaller-scale variations become less pronounced due to the vanishing gradient problem. To mitigate the errors associated with vanishing gradients, we introduce a multi-scale approach that determines scaling constants for the PINN inputs and reformulates inputs across multiple scales. This approach improves the maximum and mean errors by 72.2% and 6.4%, respectively. Our research provides insight into the behavior of PINNs when applied to transient convection problems with large solution space and field variations across multiple scales.
more »
« less
- Award ID(s):
- 2337973
- PAR ID:
- 10586756
- Publisher / Repository:
- Physics of Fluids; AIP Publishing
- Date Published:
- Journal Name:
- Physics of Fluids
- Volume:
- 36
- Issue:
- 12
- ISSN:
- 1070-6631
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Understanding mixing and transport of passive scalars in active fluids is important to many natural (e.g., algal blooms) and industrial (e.g., biofuel, vaccine production) processes. Here, we study the mixing of a passive scalar (dye) in dilute suspensions of swimmingEscherichia coliin experiments using a two-dimensional (2D) time-periodic flow and in a simple simulation. Results show that the presence of bacteria hinders large-scale transport and reduces overall mixing rate. Stretching fields, calculated from experimentally measured velocity fields, show that bacterial activity attenuates fluid stretching and lowers flow chaoticity. Simulations suggest that this attenuation may be attributed to a transient accumulation of bacteria along regions of high stretching. Spatial power spectra and correlation functions of dye-concentration fields show that the transport of scalar variance across scales is also hindered by bacterial activity, resulting in an increase in average size and lifetime of structures. On the other hand, at small scales, activity seems to enhance local mixing. One piece of evidence is that the probability distribution of the spatial concentration gradients is nearly symmetric with a vanishing skewness. Overall, our results show that the coupling between activity and flow can lead to nontrivial effects on mixing and transport.more » « less
-
Despite the success of physics-informed neural networks (PINNs) in approximating partial differential equations (PDEs), PINNs can sometimes fail to converge to the correct solution in problems involving complicated PDEs. This is reflected in several recent studies on characterizing the "failure modes" of PINNs, although a thorough understanding of the connection between PINN failure modes and sampling strategies is missing. In this paper, we provide a novel perspective of failure modes of PINNs by hypothesizing that training PINNs relies on successful "propagation" of solution from initial and/or boundary condition points to interior points. We show that PINNs with poor sampling strategies can get stuck at trivial solutions if there are propagation failures, characterized by highly imbalanced PDE residual fields. To mitigate propagation failures, we propose a novel Retain-Resample-Release sampling (R3) algorithm that can incrementally accumulate collocation points in regions of high PDE residuals with little to no computational overhead. We provide an extension of R3 sampling to respect the principle of causality while solving timedependent PDEs. We theoretically analyze the behavior of R3 sampling and empirically demonstrate its efficacy and efficiency in comparison with baselines on a variety of PDE problems.more » « less
-
Despite the success of physics-informed neural networks (PINNs) in approximating partial differential equations (PDEs), PINNs can sometimes fail to converge to the correct solution in problems involving complicated PDEs. This is reflected in several recent studies on characterizing the "failure modes" of PINNs, although a thorough understanding of the connection between PINN failure modes and sampling strategies is missing. In this paper, we provide a novel perspective of failure modes of PINNs by hypothesizing that training PINNs relies on successful "propagation" of solution from initial and/or boundary condition points to interior points. We show that PINNs with poor sampling strategies can get stuck at trivial solutions if there are propagation failures, characterized by highly imbalanced PDE residual fields. To mitigate propagation failures, we propose a novel Retain-Resample-Release sampling (R3) algorithm that can incrementally accumulate collocation points in regions of high PDE residuals with little to no computational overhead. We provide an extension of R3 sampling to respect the principle of causality while solving timedependent PDEs. We theoretically analyze the behavior of R3 sampling and empirically demonstrate its efficacy and efficiency in comparison with baselines on a variety of PDE problems.more » « less
-
Abstract Battery lifetime and reliability depend on accurate state-of-health (SOH) estimation, while complex degradation mechanisms and varying operating conditions strengthen this challenge. This study presents two physics-informed neural network (PINN) configurations, PINN-parallel and PINN-series, designed to improve SOH prediction by combining an equivalent circuit model (ECM) with a long short-term memory (LSTM) network. PINN-parallel process inputs data through parallel ECM and LSTM modules and combines their outputs for SOH estimation. On the other hand, the PINN-series uses a sequential approach that feeds ECM-derived parameters into the LSTM network to supplement temporal data analysis with physics information. Both models utilize easily accessible voltage, current, and temperature data that match realistic battery monitoring constraints. Experimental evaluations show that the PINN-series outperforms the PINN-parallel and the baseline LSTM model in accuracy and robustness. It also adapts well to different input conditions. This demonstrates that the simulated battery dynamic states from ECM increase the LSTM's ability to capture degradation patterns and improve the model's ability to explain complex battery behavior. However, a trade-off between the robustness and training efficiency of PINNs is identified. The research outcomes show the potential of PINN models (particularly the PINN-series) in advancing battery management systems, although they require considerable computational resources.more » « less
An official website of the United States government
